51    JPH_INLINE 
bool             ApplyVelocityStep(
Body &ioBody1, 
Body &ioBody2, 
const Vec2 &inLambda)
 const 
   63            Vec3 impulse = mB2xA1 * inLambda[0] + mC2xA1 * inLambda[1];
 
   82        mA1 = inWorldSpaceHingeAxis1;
 
   83        Vec3 a2 = inWorldSpaceHingeAxis2;
 
   84        float dot = mA1.
Dot(a2);
 
   88            Vec3 perp = a2 - dot * mA1;
 
   96            a2 = (0.99f * perp.
Normalized() + 0.01f * mA1).Normalized();
 
  104        mB2xA1 = mB2.
Cross(mA1);
 
  105        mC2xA1 = mC2.
Cross(mA1);
 
  108        Mat44 summed_inv_inertia = mInvI1 + mInvI2;
 
  109        Mat22 inv_effective_mass;
 
  110        inv_effective_mass(0, 0) = mB2xA1.
Dot(summed_inv_inertia.
Multiply3x3(mB2xA1));
 
  111        inv_effective_mass(0, 1) = mB2xA1.
Dot(summed_inv_inertia.
Multiply3x3(mC2xA1));
 
  112        inv_effective_mass(1, 0) = mC2xA1.
Dot(summed_inv_inertia.
Multiply3x3(mB2xA1));
 
  113        inv_effective_mass(1, 1) = mC2xA1.
Dot(summed_inv_inertia.
Multiply3x3(mC2xA1));
 
  114        if (!mEffectiveMass.
SetInversed(inv_effective_mass))
 
  128        mTotalLambda *= inWarmStartImpulseRatio;
 
  129        ApplyVelocityStep(ioBody1, ioBody2, mTotalLambda);
 
  140        jv[0] = mB2xA1.
Dot(delta_ang);
 
  141        jv[1] = mC2xA1.
Dot(delta_ang);
 
  142        Vec2 lambda = mEffectiveMass * jv;
 
  145        mTotalLambda += lambda;
 
  147        return ApplyVelocityStep(ioBody1, ioBody2, lambda);
 
  164            Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
 
  181            Vec3 impulse = mB2xA1 * lambda[0] + mC2xA1 * lambda[1];
 
  201        inStream.
Write(mTotalLambda);
 
  207        inStream.
Read(mTotalLambda);
 
  218    Mat22                       mEffectiveMass;
 
#define JPH_NAMESPACE_END
Definition: Core.h:378
 
#define JPH_NAMESPACE_BEGIN
Definition: Core.h:372
 
#define JPH_ASSERT(...)
Definition: IssueReporting.h:33
 
const MotionProperties * GetMotionProperties() const
Access to the motion properties.
Definition: Body.h:263
 
bool IsDynamic() const
Check if this body is dynamic, which means that it moves and forces can act on it.
Definition: Body.h:63
 
void AddRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
Update rotation using an Euler step (used during position integrate & constraint solving)
Definition: Body.inl:81
 
void SubRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
Definition: Body.inl:100
 
Vec3 GetAngularVelocity() const
Get world space angular velocity of the center of mass (unit: rad/s)
Definition: Body.h:157
 
Definition: HingeRotationConstraintPart.h:44
 
bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, float inBaumgarte) const
Iteratively update the position constraint. Makes sure C(...) = 0.
Definition: HingeRotationConstraintPart.h:151
 
void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inWorldSpaceHingeAxis1, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inWorldSpaceHingeAxis2)
Calculate properties used during the functions below.
Definition: HingeRotationConstraintPart.h:76
 
void Deactivate()
Deactivate this constraint.
Definition: HingeRotationConstraintPart.h:119
 
void SaveState(StateRecorder &inStream) const
Save state of this constraint part.
Definition: HingeRotationConstraintPart.h:199
 
void WarmStart(Body &ioBody1, Body &ioBody2, float inWarmStartImpulseRatio)
Must be called from the WarmStartVelocityConstraint call to apply the previous frame's impulses.
Definition: HingeRotationConstraintPart.h:126
 
const Vec2 & GetTotalLambda() const
Return lagrange multiplier.
Definition: HingeRotationConstraintPart.h:193
 
bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2)
Iteratively update the velocity constraint. Makes sure d/dt C(...) = 0, where C is the constraint equ...
Definition: HingeRotationConstraintPart.h:133
 
Matrix< 2, 2 > Mat22
Definition: HingeRotationConstraintPart.h:47
 
void RestoreState(StateRecorder &inStream)
Restore state of this constraint part.
Definition: HingeRotationConstraintPart.h:205
 
Vector< 2 > Vec2
Definition: HingeRotationConstraintPart.h:46
 
Holds a 4x4 matrix of floats, but supports also operations on the 3x3 upper left part of the matrix.
Definition: Mat44.h:13
 
static JPH_INLINE Mat44 sZero()
Zero matrix.
Definition: Mat44.inl:30
 
JPH_INLINE Vec3 Multiply3x3(Vec3Arg inV) const
Multiply vector by only 3x3 part of the matrix.
Definition: Mat44.inl:316
 
bool SetInversed(const Matrix &inM)
Inverse matrix.
Definition: Matrix.h:200
 
void SetZero()
Zero matrix.
Definition: Matrix.h:26
 
void SubAngularVelocityStep(Vec3Arg inAngularVelocityChange)
Definition: MotionProperties.h:194
 
Mat44 GetInverseInertiaForRotation(Mat44Arg inRotation) const
Get inverse inertia matrix ( ) for a given object rotation (translation will be ignored)....
Definition: MotionProperties.inl:59
 
void AddAngularVelocityStep(Vec3Arg inAngularVelocityChange)
Definition: MotionProperties.h:193
 
Definition: StateRecorder.h:105
 
void Read(T &outT)
Read a primitive (e.g. float, int, etc.) from the binary stream.
Definition: StreamIn.h:29
 
void Write(const T &inT)
Write a primitive (e.g. float, int, etc.) to the binary stream.
Definition: StreamOut.h:26
 
JPH_INLINE float Dot(Vec3Arg inV2) const
Dot product.
Definition: Vec3.inl:649
 
JPH_INLINE Vec3 Normalized() const
Normalize vector.
Definition: Vec3.inl:706
 
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const
Cross product.
Definition: Vec3.inl:594
 
JPH_INLINE Vec3 GetNormalizedPerpendicular() const
Get normalized vector that is perpendicular to this vector.
Definition: Vec3.inl:824
 
JPH_INLINE bool IsNormalized(float inTolerance=1.0e-6f) const
Test if vector is normalized.
Definition: Vec3.inl:749
 
JPH_INLINE float LengthSq() const
Squared length of vector.
Definition: Vec3.inl:665
 
void SetZero()
Vector with all zeros.
Definition: Vector.h:22
 
bool IsZero() const
Test if vector consists of all zeros.
Definition: Vector.h:69
 
static Vector sZero()
Definition: Vector.h:28