Jolt Physics
A multi core friendly Game Physics Engine
Loading...
Searching...
No Matches
HashTable.h
Go to the documentation of this file.
1// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2// SPDX-FileCopyrightText: 2024 Jorrit Rouwe
3// SPDX-License-Identifier: MIT
4
5#pragma once
6
7#include <Jolt/Math/BVec16.h>
8
10
14template <class Key, class KeyValue, class HashTableDetail, class Hash, class KeyEqual>
16{
17public:
19 using value_type = KeyValue;
21 using difference_type = ptrdiff_t;
22
23private:
25 template <class Table, class Iterator>
26 class IteratorBase
27 {
28 public:
30 using difference_type = typename Table::difference_type;
31 using value_type = typename Table::value_type;
32 using iterator_category = std::forward_iterator_tag;
33
35 IteratorBase(const IteratorBase &inRHS) = default;
36
38 IteratorBase & operator = (const IteratorBase &inRHS) = default;
39
41 explicit IteratorBase(Table *inTable) :
42 mTable(inTable),
43 mIndex(0)
44 {
45 while (mIndex < mTable->mMaxSize && (mTable->mControl[mIndex] & cBucketUsed) == 0)
46 ++mIndex;
47 }
48
50 IteratorBase(Table *inTable, size_type inIndex) :
51 mTable(inTable),
52 mIndex(inIndex)
53 {
54 }
55
57 Iterator & operator ++ ()
58 {
59 JPH_ASSERT(IsValid());
60
61 do
62 {
63 ++mIndex;
64 }
65 while (mIndex < mTable->mMaxSize && (mTable->mControl[mIndex] & cBucketUsed) == 0);
66
67 return static_cast<Iterator &>(*this);
68 }
69
71 Iterator operator ++ (int)
72 {
73 Iterator result(mTable, mIndex);
74 ++(*this);
75 return result;
76 }
77
79 const KeyValue & operator * () const
80 {
81 JPH_ASSERT(IsValid());
82 return mTable->mData[mIndex];
83 }
84
86 const KeyValue * operator -> () const
87 {
88 JPH_ASSERT(IsValid());
89 return mTable->mData + mIndex;
90 }
91
93 bool operator == (const Iterator &inRHS) const
94 {
95 return mIndex == inRHS.mIndex && mTable == inRHS.mTable;
96 }
97
99 bool operator != (const Iterator &inRHS) const
100 {
101 return !(*this == inRHS);
102 }
103
105 bool IsValid() const
106 {
107 return mIndex < mTable->mMaxSize
108 && (mTable->mControl[mIndex] & cBucketUsed) != 0;
109 }
110
111 Table * mTable;
112 size_type mIndex;
113 };
114
116 static constexpr size_type sGetMaxLoad(size_type inBucketCount)
117 {
118 return uint32((cMaxLoadFactorNumerator * inBucketCount) / cMaxLoadFactorDenominator);
119 }
120
122 JPH_INLINE void SetControlValue(size_type inIndex, uint8 inValue)
123 {
124 JPH_ASSERT(inIndex < mMaxSize);
125 mControl[inIndex] = inValue;
126
127 // Mirror the first 15 bytes to the 15 bytes beyond mMaxSize
128 // Note that this is equivalent to:
129 // if (inIndex < 15)
130 // mControl[inIndex + mMaxSize] = inValue
131 // else
132 // mControl[inIndex] = inValue
133 // Which performs a needless write if inIndex >= 15 but at least it is branch-less
134 mControl[((inIndex - 15) & (mMaxSize - 1)) + 15] = inValue;
135 }
136
138 JPH_INLINE void GetIndexAndControlValue(const Key &inKey, size_type &outIndex, uint8 &outControl) const
139 {
140 // Calculate hash
141 uint64 hash_value = Hash { } (inKey);
142
143 // Split hash into index and control value
144 outIndex = size_type(hash_value >> 7) & (mMaxSize - 1);
145 outControl = cBucketUsed | uint8(hash_value);
146 }
147
149 void AllocateTable(size_type inMaxSize)
150 {
151 JPH_ASSERT(mData == nullptr);
152
153 mMaxSize = inMaxSize;
154 mLoadLeft = sGetMaxLoad(inMaxSize);
155 size_t required_size = size_t(mMaxSize) * (sizeof(KeyValue) + 1) + 15; // Add 15 bytes to mirror the first 15 bytes of the control values
156 if constexpr (cNeedsAlignedAllocate)
157 mData = reinterpret_cast<KeyValue *>(AlignedAllocate(required_size, alignof(KeyValue)));
158 else
159 mData = reinterpret_cast<KeyValue *>(Allocate(required_size));
160 mControl = reinterpret_cast<uint8 *>(mData + mMaxSize);
161 }
162
164 void CopyTable(const HashTable &inRHS)
165 {
166 if (inRHS.empty())
167 return;
168
169 AllocateTable(inRHS.mMaxSize);
170
171 // Copy control bytes
172 memcpy(mControl, inRHS.mControl, mMaxSize + 15);
173
174 // Copy elements
175 uint index = 0;
176 for (const uint8 *control = mControl, *control_end = mControl + mMaxSize; control != control_end; ++control, ++index)
177 if (*control & cBucketUsed)
178 new (mData + index) KeyValue(inRHS.mData[index]);
179 mSize = inRHS.mSize;
180 }
181
183 void GrowTable(size_type inNewMaxSize)
184 {
185 // Move the old table to a temporary structure
186 size_type old_max_size = mMaxSize;
187 KeyValue *old_data = mData;
188 const uint8 *old_control = mControl;
189 mData = nullptr;
190 mControl = nullptr;
191 mSize = 0;
192 mMaxSize = 0;
193 mLoadLeft = 0;
194
195 // Allocate new table
196 AllocateTable(inNewMaxSize);
197
198 // Reset all control bytes
199 memset(mControl, cBucketEmpty, mMaxSize + 15);
200
201 if (old_data != nullptr)
202 {
203 // Copy all elements from the old table
204 for (size_type i = 0; i < old_max_size; ++i)
205 if (old_control[i] & cBucketUsed)
206 {
207 size_type index;
208 KeyValue *element = old_data + i;
209 JPH_IF_ENABLE_ASSERTS(bool inserted =) InsertKey</* InsertAfterGrow= */ true>(HashTableDetail::sGetKey(*element), index);
210 JPH_ASSERT(inserted);
211 new (mData + index) KeyValue(std::move(*element));
212 element->~KeyValue();
213 }
214
215 // Free memory
216 if constexpr (cNeedsAlignedAllocate)
217 AlignedFree(old_data);
218 else
219 Free(old_data);
220 }
221 }
222
223protected:
225 KeyValue & GetElement(size_type inIndex) const
226 {
227 return mData[inIndex];
228 }
229
232 template <bool InsertAfterGrow = false>
233 bool InsertKey(const Key &inKey, size_type &outIndex)
234 {
235 // Ensure we have enough space
236 if (mLoadLeft == 0)
237 {
238 // Should not be growing if we're already growing!
239 if constexpr (InsertAfterGrow)
240 JPH_ASSERT(false);
241
242 // Decide if we need to clean up all tombstones or if we need to grow the map
243 size_type num_deleted = sGetMaxLoad(mMaxSize) - mSize;
244 if (num_deleted * cMaxDeletedElementsDenominator > mMaxSize * cMaxDeletedElementsNumerator)
245 rehash(0);
246 else
247 {
248 // Grow by a power of 2
249 size_type new_max_size = max<size_type>(mMaxSize << 1, 16);
250 if (new_max_size < mMaxSize)
251 {
252 JPH_ASSERT(false, "Overflow in hash table size, can't grow!");
253 return false;
254 }
255 GrowTable(new_max_size);
256 }
257 }
258
259 // Split hash into index and control value
260 size_type index;
261 uint8 control;
262 GetIndexAndControlValue(inKey, index, control);
263
264 // Keeps track of the index of the first deleted bucket we found
265 constexpr size_type cNoDeleted = ~size_type(0);
266 size_type first_deleted_index = cNoDeleted;
267
268 // Linear probing
269 KeyEqual equal;
270 size_type bucket_mask = mMaxSize - 1;
271 BVec16 control16 = BVec16::sReplicate(control);
272 BVec16 bucket_empty = BVec16::sZero();
273 BVec16 bucket_deleted = BVec16::sReplicate(cBucketDeleted);
274 for (;;)
275 {
276 // Read 16 control values (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
277 BVec16 control_bytes = BVec16::sLoadByte16(mControl + index);
278
279 // Check if we must find the element before we can insert
280 if constexpr (!InsertAfterGrow)
281 {
282 // Check for the control value we're looking for
283 // Note that when deleting we can create empty buckets instead of deleted buckets.
284 // This means we must unconditionally check all buckets in this batch for equality
285 // (also beyond the first empty bucket).
286 uint32 control_equal = uint32(BVec16::sEquals(control_bytes, control16).GetTrues());
287
288 // Index within the 16 buckets
289 size_type local_index = index;
290
291 // Loop while there's still buckets to process
292 while (control_equal != 0)
293 {
294 // Get the first equal bucket
295 uint first_equal = CountTrailingZeros(control_equal);
296
297 // Skip to the bucket
298 local_index += first_equal;
299
300 // Make sure that our index is not beyond the end of the table
301 local_index &= bucket_mask;
302
303 // We found a bucket with same control value
304 if (equal(HashTableDetail::sGetKey(mData[local_index]), inKey))
305 {
306 // Element already exists
307 outIndex = local_index;
308 return false;
309 }
310
311 // Skip past this bucket
312 control_equal >>= first_equal + 1;
313 local_index++;
314 }
315
316 // Check if we're still scanning for deleted buckets
317 if (first_deleted_index == cNoDeleted)
318 {
319 // Check if any buckets have been deleted, if so store the first one
320 uint32 control_deleted = uint32(BVec16::sEquals(control_bytes, bucket_deleted).GetTrues());
321 if (control_deleted != 0)
322 first_deleted_index = index + CountTrailingZeros(control_deleted);
323 }
324 }
325
326 // Check for empty buckets
327 uint32 control_empty = uint32(BVec16::sEquals(control_bytes, bucket_empty).GetTrues());
328 if (control_empty != 0)
329 {
330 // If we found a deleted bucket, use it.
331 // It doesn't matter if it is before or after the first empty bucket we found
332 // since we will always be scanning in batches of 16 buckets.
333 if (first_deleted_index == cNoDeleted || InsertAfterGrow)
334 {
335 index += CountTrailingZeros(control_empty);
336 --mLoadLeft; // Using an empty bucket decreases the load left
337 }
338 else
339 {
340 index = first_deleted_index;
341 }
342
343 // Make sure that our index is not beyond the end of the table
344 index &= bucket_mask;
345
346 // Update control byte
347 SetControlValue(index, control);
348 ++mSize;
349
350 // Return index to newly allocated bucket
351 outIndex = index;
352 return true;
353 }
354
355 // Move to next batch of 16 buckets
356 index = (index + 16) & bucket_mask;
357 }
358 }
359
360public:
362 class iterator : public IteratorBase<HashTable, iterator>
363 {
364 using Base = IteratorBase<HashTable, iterator>;
365
366 public:
367 using IteratorBase<HashTable, iterator>::operator ==;
368
370 using reference = typename Base::value_type &;
371 using pointer = typename Base::value_type *;
372
374 explicit iterator(HashTable *inTable) : Base(inTable) { }
375 iterator(HashTable *inTable, size_type inIndex) : Base(inTable, inIndex) { }
376 iterator(const iterator &inIterator) : Base(inIterator) { }
377
379 iterator & operator = (const iterator &inRHS) { Base::operator = (inRHS); return *this; }
380
381 using Base::operator *;
382
384 KeyValue & operator * ()
385 {
386 JPH_ASSERT(this->IsValid());
387 return this->mTable->mData[this->mIndex];
388 }
389
390 using Base::operator ->;
391
393 KeyValue * operator -> ()
394 {
395 JPH_ASSERT(this->IsValid());
396 return this->mTable->mData + this->mIndex;
397 }
398 };
399
401 class const_iterator : public IteratorBase<const HashTable, const_iterator>
402 {
403 using Base = IteratorBase<const HashTable, const_iterator>;
404
405 public:
406 using IteratorBase<const HashTable, const_iterator>::operator ==;
407
409 using reference = const typename Base::value_type &;
410 using pointer = const typename Base::value_type *;
411
413 explicit const_iterator(const HashTable *inTable) : Base(inTable) { }
414 const_iterator(const HashTable *inTable, size_type inIndex) : Base(inTable, inIndex) { }
415 const_iterator(const const_iterator &inRHS) : Base(inRHS) { }
416 const_iterator(const iterator &inIterator) : Base(inIterator.mTable, inIterator.mIndex) { }
417
419 const_iterator & operator = (const iterator &inRHS) { this->mTable = inRHS.mTable; this->mIndex = inRHS.mIndex; return *this; }
420 const_iterator & operator = (const const_iterator &inRHS) { Base::operator = (inRHS); return *this; }
421 };
422
424 HashTable() = default;
425
427 HashTable(const HashTable &inRHS)
428 {
429 CopyTable(inRHS);
430 }
431
433 HashTable(HashTable &&ioRHS) noexcept :
434 mData(ioRHS.mData),
435 mControl(ioRHS.mControl),
436 mSize(ioRHS.mSize),
437 mMaxSize(ioRHS.mMaxSize),
438 mLoadLeft(ioRHS.mLoadLeft)
439 {
440 ioRHS.mData = nullptr;
441 ioRHS.mControl = nullptr;
442 ioRHS.mSize = 0;
443 ioRHS.mMaxSize = 0;
444 ioRHS.mLoadLeft = 0;
445 }
446
449 {
450 if (this != &inRHS)
451 {
452 clear();
453
454 CopyTable(inRHS);
455 }
456
457 return *this;
458 }
459
461 HashTable & operator = (HashTable &&ioRHS) noexcept
462 {
463 if (this != &ioRHS)
464 {
465 clear();
466
467 mData = ioRHS.mData;
468 mControl = ioRHS.mControl;
469 mSize = ioRHS.mSize;
470 mMaxSize = ioRHS.mMaxSize;
471 mLoadLeft = ioRHS.mLoadLeft;
472
473 ioRHS.mData = nullptr;
474 ioRHS.mControl = nullptr;
475 ioRHS.mSize = 0;
476 ioRHS.mMaxSize = 0;
477 ioRHS.mLoadLeft = 0;
478 }
479
480 return *this;
481 }
482
485 {
486 clear();
487 }
488
490 void reserve(size_type inMaxSize)
491 {
492 // Calculate max size based on load factor
493 size_type max_size = GetNextPowerOf2(max<uint32>((cMaxLoadFactorDenominator * inMaxSize) / cMaxLoadFactorNumerator, 16));
494 if (max_size <= mMaxSize)
495 return;
496
497 GrowTable(max_size);
498 }
499
501 void clear()
502 {
503 // Delete all elements
504 if constexpr (!std::is_trivially_destructible<KeyValue>())
505 if (!empty())
506 for (size_type i = 0; i < mMaxSize; ++i)
507 if (mControl[i] & cBucketUsed)
508 mData[i].~KeyValue();
509
510 if (mData != nullptr)
511 {
512 // Free memory
513 if constexpr (cNeedsAlignedAllocate)
514 AlignedFree(mData);
515 else
516 Free(mData);
517
518 // Reset members
519 mData = nullptr;
520 mControl = nullptr;
521 mSize = 0;
522 mMaxSize = 0;
523 mLoadLeft = 0;
524 }
525 }
526
529 {
530 // Destruct elements
531 if constexpr (!std::is_trivially_destructible<KeyValue>())
532 if (!empty())
533 for (size_type i = 0; i < mMaxSize; ++i)
534 if (mControl[i] & cBucketUsed)
535 mData[i].~KeyValue();
536 mSize = 0;
537
538 // If there are elements that are not marked cBucketEmpty, we reset them
539 size_type max_load = sGetMaxLoad(mMaxSize);
540 if (mLoadLeft != max_load)
541 {
542 // Reset all control bytes
543 memset(mControl, cBucketEmpty, mMaxSize + 15);
544 mLoadLeft = max_load;
545 }
546 }
547
550 {
551 return iterator(this);
552 }
553
556 {
557 return iterator(this, mMaxSize);
558 }
559
562 {
563 return const_iterator(this);
564 }
565
568 {
569 return const_iterator(this, mMaxSize);
570 }
571
574 {
575 return const_iterator(this);
576 }
577
580 {
581 return const_iterator(this, mMaxSize);
582 }
583
586 {
587 return mMaxSize;
588 }
589
591 constexpr size_type max_bucket_count() const
592 {
593 return size_type(1) << (sizeof(size_type) * 8 - 1);
594 }
595
597 bool empty() const
598 {
599 return mSize == 0;
600 }
601
604 {
605 return mSize;
606 }
607
609 constexpr size_type max_size() const
610 {
611 return size_type((uint64(max_bucket_count()) * cMaxLoadFactorNumerator) / cMaxLoadFactorDenominator);
612 }
613
615 constexpr float max_load_factor() const
616 {
617 return float(cMaxLoadFactorNumerator) / float(cMaxLoadFactorDenominator);
618 }
619
621 std::pair<iterator, bool> insert(const value_type &inValue)
622 {
623 size_type index;
624 bool inserted = InsertKey(HashTableDetail::sGetKey(inValue), index);
625 if (inserted)
626 new (mData + index) KeyValue(inValue);
627 return std::make_pair(iterator(this, index), inserted);
628 }
629
631 const_iterator find(const Key &inKey) const
632 {
633 // Check if we have any data
634 if (empty())
635 return cend();
636
637 // Split hash into index and control value
638 size_type index;
639 uint8 control;
640 GetIndexAndControlValue(inKey, index, control);
641
642 // Linear probing
643 KeyEqual equal;
644 size_type bucket_mask = mMaxSize - 1;
645 BVec16 control16 = BVec16::sReplicate(control);
646 BVec16 bucket_empty = BVec16::sZero();
647 for (;;)
648 {
649 // Read 16 control values
650 // (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
651 BVec16 control_bytes = BVec16::sLoadByte16(mControl + index);
652
653 // Check for the control value we're looking for
654 // Note that when deleting we can create empty buckets instead of deleted buckets.
655 // This means we must unconditionally check all buckets in this batch for equality
656 // (also beyond the first empty bucket).
657 uint32 control_equal = uint32(BVec16::sEquals(control_bytes, control16).GetTrues());
658
659 // Index within the 16 buckets
660 size_type local_index = index;
661
662 // Loop while there's still buckets to process
663 while (control_equal != 0)
664 {
665 // Get the first equal bucket
666 uint first_equal = CountTrailingZeros(control_equal);
667
668 // Skip to the bucket
669 local_index += first_equal;
670
671 // Make sure that our index is not beyond the end of the table
672 local_index &= bucket_mask;
673
674 // We found a bucket with same control value
675 if (equal(HashTableDetail::sGetKey(mData[local_index]), inKey))
676 {
677 // Element found
678 return const_iterator(this, local_index);
679 }
680
681 // Skip past this bucket
682 control_equal >>= first_equal + 1;
683 local_index++;
684 }
685
686 // Check for empty buckets
687 uint32 control_empty = uint32(BVec16::sEquals(control_bytes, bucket_empty).GetTrues());
688 if (control_empty != 0)
689 {
690 // An empty bucket was found, we didn't find the element
691 return cend();
692 }
693
694 // Move to next batch of 16 buckets
695 index = (index + 16) & bucket_mask;
696 }
697 }
698
700 void erase(const const_iterator &inIterator)
701 {
702 JPH_ASSERT(inIterator.IsValid());
703
704 // Read 16 control values before and after the current index
705 // (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
706 BVec16 control_bytes_before = BVec16::sLoadByte16(mControl + ((inIterator.mIndex - 16) & (mMaxSize - 1)));
707 BVec16 control_bytes_after = BVec16::sLoadByte16(mControl + inIterator.mIndex);
708 BVec16 bucket_empty = BVec16::sZero();
709 uint32 control_empty_before = uint32(BVec16::sEquals(control_bytes_before, bucket_empty).GetTrues());
710 uint32 control_empty_after = uint32(BVec16::sEquals(control_bytes_after, bucket_empty).GetTrues());
711
712 // If (this index including) there exist 16 consecutive non-empty slots (represented by a bit being 0) then
713 // a probe looking for some element needs to continue probing so we cannot mark the bucket as empty
714 // but must mark it as deleted instead.
715 // Note that we use: CountLeadingZeros(uint16) = CountLeadingZeros(uint32) - 16.
716 uint8 control_value = CountLeadingZeros(control_empty_before) - 16 + CountTrailingZeros(control_empty_after) < 16? cBucketEmpty : cBucketDeleted;
717
718 // Mark the bucket as empty/deleted
719 SetControlValue(inIterator.mIndex, control_value);
720
721 // Destruct the element
722 mData[inIterator.mIndex].~KeyValue();
723
724 // If we marked the bucket as empty we can increase the load left
725 if (control_value == cBucketEmpty)
726 ++mLoadLeft;
727
728 // Decrease size
729 --mSize;
730 }
731
733 size_type erase(const Key &inKey)
734 {
735 const_iterator it = find(inKey);
736 if (it == cend())
737 return 0;
738
739 erase(it);
740 return 1;
741 }
742
744 void swap(HashTable &ioRHS) noexcept
745 {
746 std::swap(mData, ioRHS.mData);
747 std::swap(mControl, ioRHS.mControl);
748 std::swap(mSize, ioRHS.mSize);
749 std::swap(mMaxSize, ioRHS.mMaxSize);
750 std::swap(mLoadLeft, ioRHS.mLoadLeft);
751 }
752
756 {
757 // Update the control value for all buckets
758 for (size_type i = 0; i < mMaxSize; ++i)
759 {
760 uint8 &control = mControl[i];
761 switch (control)
762 {
763 case cBucketDeleted:
764 // Deleted buckets become empty
765 control = cBucketEmpty;
766 break;
767 case cBucketEmpty:
768 // Remains empty
769 break;
770 default:
771 // Mark all occupied as deleted, to indicate it needs to move to the correct place
772 control = cBucketDeleted;
773 break;
774 }
775 }
776
777 // Replicate control values to the last 15 entries
778 for (size_type i = 0; i < 15; ++i)
779 mControl[mMaxSize + i] = mControl[i];
780
781 // Loop over all elements that have been 'deleted' and move them to their new spot
782 BVec16 bucket_used = BVec16::sReplicate(cBucketUsed);
783 size_type bucket_mask = mMaxSize - 1;
784 uint32 probe_mask = bucket_mask & ~uint32(0b1111); // Mask out lower 4 bits because we test 16 buckets at a time
785 for (size_type src = 0; src < mMaxSize; ++src)
786 if (mControl[src] == cBucketDeleted)
787 for (;;)
788 {
789 // Split hash into index and control value
790 size_type src_index;
791 uint8 src_control;
792 GetIndexAndControlValue(HashTableDetail::sGetKey(mData[src]), src_index, src_control);
793
794 // Linear probing
795 size_type dst = src_index;
796 for (;;)
797 {
798 // Check if any buckets are free
799 BVec16 control_bytes = BVec16::sLoadByte16(mControl + dst);
800 uint32 control_free = uint32(BVec16::sAnd(control_bytes, bucket_used).GetTrues()) ^ 0xffff;
801 if (control_free != 0)
802 {
803 // Select this bucket as destination
804 dst += CountTrailingZeros(control_free);
805 dst &= bucket_mask;
806 break;
807 }
808
809 // Move to next batch of 16 buckets
810 dst = (dst + 16) & bucket_mask;
811 }
812
813 // Check if we stay in the same probe group
814 if (((dst - src_index) & probe_mask) == ((src - src_index) & probe_mask))
815 {
816 // We stay in the same group, we can stay where we are
817 SetControlValue(src, src_control);
818 break;
819 }
820 else if (mControl[dst] == cBucketEmpty)
821 {
822 // There's an empty bucket, move us there
823 SetControlValue(dst, src_control);
824 SetControlValue(src, cBucketEmpty);
825 new (mData + dst) KeyValue(std::move(mData[src]));
826 mData[src].~KeyValue();
827 break;
828 }
829 else
830 {
831 // There's an element in the bucket we want to move to, swap them
832 JPH_ASSERT(mControl[dst] == cBucketDeleted);
833 SetControlValue(dst, src_control);
834 std::swap(mData[src], mData[dst]);
835 // Iterate again with the same source bucket
836 }
837 }
838
839 // Reinitialize load left
840 mLoadLeft = sGetMaxLoad(mMaxSize) - mSize;
841 }
842
843private:
845 static constexpr bool cNeedsAlignedAllocate = alignof(KeyValue) > (JPH_CPU_ADDRESS_BITS == 32? 8 : 16);
846
848 static constexpr uint64 cMaxLoadFactorNumerator = 7;
849 static constexpr uint64 cMaxLoadFactorDenominator = 8;
850
852 static constexpr uint64 cMaxDeletedElementsNumerator = 1;
853 static constexpr uint64 cMaxDeletedElementsDenominator = 8;
854
856 static constexpr uint8 cBucketEmpty = 0;
857 static constexpr uint8 cBucketDeleted = 0x7f;
858 static constexpr uint8 cBucketUsed = 0x80; // Lowest 7 bits are lowest 7 bits of the hash value
859
861 KeyValue * mData = nullptr;
862
864 uint8 * mControl = nullptr;
865
867 size_type mSize = 0;
868
870 size_type mMaxSize = 0;
871
873 size_type mLoadLeft = 0;
874};
875
std::uint8_t uint8
Definition: Core.h:493
std::uint64_t uint64
Definition: Core.h:496
unsigned int uint
Definition: Core.h:492
#define JPH_NAMESPACE_END
Definition: Core.h:419
std::uint32_t uint32
Definition: Core.h:495
#define JPH_NAMESPACE_BEGIN
Definition: Core.h:413
#define JPH_IF_ENABLE_ASSERTS(...)
Definition: IssueReporting.h:35
#define JPH_ASSERT(...)
Definition: IssueReporting.h:33
uint CountTrailingZeros(uint32 inValue)
Compute number of trailing zero bits (how many low bits are zero)
Definition: Math.h:98
uint CountLeadingZeros(uint32 inValue)
Compute the number of leading zero bits (how many high bits are zero)
Definition: Math.h:134
uint32 GetNextPowerOf2(uint32 inValue)
Get the next higher power of 2 of a value, or the value itself if the value is already a power of 2.
Definition: Math.h:185
AllocateFunction Allocate
Definition: Memory.cpp:68
FreeFunction Free
Definition: Memory.cpp:70
AlignedFreeFunction AlignedFree
Definition: Memory.cpp:72
AlignedAllocateFunction AlignedAllocate
Definition: Memory.cpp:71
A vector consisting of 16 bytes.
Definition: BVec16.h:11
static JPH_INLINE BVec16 sZero()
Vector with all zeros.
Definition: BVec16.inl:46
static JPH_INLINE BVec16 sEquals(BVec16Arg inV1, BVec16Arg inV2)
Equals (component wise), highest bit of each component that is set is considered true.
Definition: BVec16.inl:83
static JPH_INLINE BVec16 sReplicate(uint8 inV)
Replicate int inV across all components.
Definition: BVec16.inl:57
static JPH_INLINE BVec16 sAnd(BVec16Arg inV1, BVec16Arg inV2)
Logical and (component wise)
Definition: BVec16.inl:124
static JPH_INLINE BVec16 sLoadByte16(const uint8 *inV)
Load 16 bytes from memory.
Definition: BVec16.inl:72
Const iterator.
Definition: HashTable.h:402
const_iterator(const HashTable *inTable, size_type inIndex)
Definition: HashTable.h:414
const_iterator & operator=(const iterator &inRHS)
Assignment.
Definition: HashTable.h:419
const typename Base::value_type * pointer
Definition: HashTable.h:410
const_iterator(const iterator &inIterator)
Definition: HashTable.h:416
const_iterator(const HashTable *inTable)
Constructors.
Definition: HashTable.h:413
const typename Base::value_type & reference
Properties.
Definition: HashTable.h:409
const_iterator(const const_iterator &inRHS)
Definition: HashTable.h:415
Non-const iterator.
Definition: HashTable.h:363
typename Base::value_type * pointer
Definition: HashTable.h:371
typename Base::value_type & reference
Properties.
Definition: HashTable.h:370
KeyValue & operator*()
Non-const access to key value pair.
Definition: HashTable.h:384
KeyValue * operator->()
Non-const access to key value pair.
Definition: HashTable.h:393
iterator(HashTable *inTable)
Constructors.
Definition: HashTable.h:374
iterator & operator=(const iterator &inRHS)
Assignment.
Definition: HashTable.h:379
iterator(HashTable *inTable, size_type inIndex)
Definition: HashTable.h:375
iterator(const iterator &inIterator)
Definition: HashTable.h:376
Definition: HashTable.h:16
void reserve(size_type inMaxSize)
Reserve memory for a certain number of elements.
Definition: HashTable.h:490
ptrdiff_t difference_type
Definition: HashTable.h:21
void clear()
Destroy the entire hash table.
Definition: HashTable.h:501
KeyValue & GetElement(size_type inIndex) const
Get an element by index.
Definition: HashTable.h:225
iterator end()
Iterator to one beyond last element.
Definition: HashTable.h:555
constexpr size_type max_bucket_count() const
Max number of buckets that the table can have.
Definition: HashTable.h:591
HashTable(const HashTable &inRHS)
Copy constructor.
Definition: HashTable.h:427
size_type size() const
Number of elements in the table.
Definition: HashTable.h:603
HashTable()=default
Default constructor.
void swap(HashTable &ioRHS) noexcept
Swap the contents of two hash tables.
Definition: HashTable.h:744
const_iterator cbegin() const
Iterator to first element.
Definition: HashTable.h:573
~HashTable()
Destructor.
Definition: HashTable.h:484
iterator begin()
Iterator to first element.
Definition: HashTable.h:549
const_iterator end() const
Iterator to one beyond last element.
Definition: HashTable.h:567
const_iterator find(const Key &inKey) const
Find an element, returns iterator to element or end() if not found.
Definition: HashTable.h:631
const_iterator cend() const
Iterator to one beyond last element.
Definition: HashTable.h:579
HashTable(HashTable &&ioRHS) noexcept
Move constructor.
Definition: HashTable.h:433
constexpr size_type max_size() const
Max number of elements that the table can hold.
Definition: HashTable.h:609
KeyValue value_type
Properties.
Definition: HashTable.h:19
bool InsertKey(const Key &inKey, size_type &outIndex)
Definition: HashTable.h:233
void ClearAndKeepMemory()
Destroy the entire hash table but keeps the memory allocated.
Definition: HashTable.h:528
uint32 size_type
Definition: HashTable.h:20
bool empty() const
Check if there are no elements in the table.
Definition: HashTable.h:597
constexpr float max_load_factor() const
Get the max load factor for this table (max number of elements / number of buckets)
Definition: HashTable.h:615
void rehash(size_type)
Definition: HashTable.h:755
std::pair< iterator, bool > insert(const value_type &inValue)
Insert a new element, returns iterator and if the element was inserted.
Definition: HashTable.h:621
void erase(const const_iterator &inIterator)
Erase an element by iterator.
Definition: HashTable.h:700
const_iterator begin() const
Iterator to first element.
Definition: HashTable.h:561
size_type bucket_count() const
Number of buckets in the table.
Definition: HashTable.h:585
size_type erase(const Key &inKey)
Erase an element by key.
Definition: HashTable.h:733
HashTable & operator=(const HashTable &inRHS)
Assignment operator.
Definition: HashTable.h:448
Definition: Array.h:699
Fallback hash function that calls T::GetHash()
Definition: HashCombine.h:59