67            Vec3 impulse = inN1 * inLambda[0] + inN2 * inLambda[1];
 
   87    inline void                 CalculateLagrangeMultiplier(
const Body &inBody1, 
const Body &inBody2, 
Vec3Arg inN1, 
Vec3Arg inN2, 
Vec2 &outLambda)
 const 
   96        outLambda = mEffectiveMass * jv;
 
  108        mR1PlusUxN1 = inR1PlusU.
Cross(inN1);
 
  109        mR1PlusUxN2 = inR1PlusU.
Cross(inN2);
 
  110        mR2xN1 = inR2.
Cross(inN1);
 
  111        mR2xN2 = inR2.
Cross(inN2);
 
  114        Mat22 inv_effective_mass;
 
  119            mInvI1_R1PlusUxN1 = inv_i1.
Multiply3x3(mR1PlusUxN1);
 
  120            mInvI1_R1PlusUxN2 = inv_i1.
Multiply3x3(mR1PlusUxN2);
 
  122            inv_effective_mass(0, 0) = mp1->
GetInverseMass() + mR1PlusUxN1.
Dot(mInvI1_R1PlusUxN1);
 
  123            inv_effective_mass(0, 1) = mR1PlusUxN1.
Dot(mInvI1_R1PlusUxN2);
 
  124            inv_effective_mass(1, 0) = mR1PlusUxN2.
Dot(mInvI1_R1PlusUxN1);
 
  125            inv_effective_mass(1, 1) = mp1->
GetInverseMass() + mR1PlusUxN2.
Dot(mInvI1_R1PlusUxN2);
 
  143            inv_effective_mass(0, 1) += mR2xN1.
Dot(mInvI2_R2xN2);
 
  144            inv_effective_mass(1, 0) += mR2xN2.
Dot(mInvI2_R2xN1);
 
  153        if (!mEffectiveMass.
SetInversed(inv_effective_mass))
 
  167        return !mEffectiveMass.
IsZero();
 
  174        mTotalLambda *= inWarmStartImpulseRatio;
 
  175        ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, mTotalLambda);
 
  183        CalculateLagrangeMultiplier(ioBody1, ioBody2, inN1, inN2, lambda);
 
  186        mTotalLambda += lambda;
 
  188        return ApplyVelocityStep(ioBody1, ioBody2, inN1, inN2, lambda);
 
  196        c[0] = inU.
Dot(inN1);
 
  197        c[1] = inU.
Dot(inN2);
 
  205            Vec2 lambda = -inBaumgarte * (mEffectiveMass * c);
 
  222            Vec3 impulse = inN1 * lambda[0] + inN2 * lambda[1];
 
  226                ioBody1.
SubRotationStep(mInvI1_R1PlusUxN1 * lambda[0] + mInvI1_R1PlusUxN2 * lambda[1]);
 
  231                ioBody2.
AddRotationStep(mInvI2_R2xN1 * lambda[0] + mInvI2_R2xN2 * lambda[1]);
 
  242        mTotalLambda = inLambda;
 
  254        inStream.
Write(mTotalLambda);
 
  260        inStream.
Read(mTotalLambda);
 
  268    Vec3                        mInvI1_R1PlusUxN1;
 
  269    Vec3                        mInvI1_R1PlusUxN2;
 
  272    Mat22                       mEffectiveMass;
 
#define JPH_IF_DEBUG(...)
Definition: Core.h:473
 
#define JPH_NAMESPACE_END
Definition: Core.h:354
 
#define JPH_NAMESPACE_BEGIN
Definition: Core.h:348
 
#define JPH_ASSERT(...)
Definition: IssueReporting.h:33
 
const MotionProperties * GetMotionProperties() const
Access to the motion properties.
Definition: Body.h:228
 
bool IsDynamic() const
Check if this body is dynamic, which means that it moves and forces can act on it.
Definition: Body.h:67
 
void AddRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
Update rotation using an Euler step (using during position integrate & constraint solving)
Definition: Body.inl:90
 
void SubPositionStep(Vec3Arg inLinearVelocityTimesDeltaTime)
Definition: Body.h:263
 
Vec3 GetLinearVelocity() const
Get world space linear velocity of the center of mass (unit: m/s)
Definition: Body.h:126
 
void SubRotationStep(Vec3Arg inAngularVelocityTimesDeltaTime)
Definition: Body.inl:109
 
Vec3 GetAngularVelocity() const
Get world space angular velocity of the center of mass (unit: rad/s)
Definition: Body.h:135
 
void AddPositionStep(Vec3Arg inLinearVelocityTimesDeltaTime)
Update position using an Euler step (used during position integrate & constraint solving)
Definition: Body.h:262
 
Definition: DualAxisConstraintPart.h:48
 
bool SolveVelocityConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2)
Definition: DualAxisConstraintPart.h:180
 
void RestoreState(StateRecorder &inStream)
Restore state of this constraint part.
Definition: DualAxisConstraintPart.h:258
 
Matrix< 2, 2 > Mat22
Definition: DualAxisConstraintPart.h:51
 
void WarmStart(Body &ioBody1, Body &ioBody2, Vec3Arg inN1, Vec3Arg inN2, float inWarmStartImpulseRatio)
Definition: DualAxisConstraintPart.h:172
 
bool SolvePositionConstraint(Body &ioBody1, Body &ioBody2, Vec3Arg inU, Vec3Arg inN1, Vec3Arg inN2, float inBaumgarte) const
Definition: DualAxisConstraintPart.h:193
 
Vector< 2 > Vec2
Definition: DualAxisConstraintPart.h:50
 
void SaveState(StateRecorder &inStream) const
Save state of this constraint part.
Definition: DualAxisConstraintPart.h:252
 
const Vec2 & GetTotalLambda() const
Return lagrange multiplier.
Definition: DualAxisConstraintPart.h:246
 
void SetTotalLambda(const Vec2 &inLambda)
Override total lagrange multiplier, can be used to set the initial value for warm starting.
Definition: DualAxisConstraintPart.h:240
 
bool IsActive() const
Check if constraint is active.
Definition: DualAxisConstraintPart.h:165
 
void Deactivate()
Deactivate this constraint.
Definition: DualAxisConstraintPart.h:158
 
void CalculateConstraintProperties(const Body &inBody1, Mat44Arg inRotation1, Vec3Arg inR1PlusU, const Body &inBody2, Mat44Arg inRotation2, Vec3Arg inR2, Vec3Arg inN1, Vec3Arg inN2)
Definition: DualAxisConstraintPart.h:102
 
Holds a 4x4 matrix of floats, but supports also operations on the 3x3 upper left part of the matrix.
Definition: Mat44.h:13
 
JPH_INLINE Vec3 Multiply3x3(Vec3Arg inV) const
Multiply vector by only 3x3 part of the matrix.
Definition: Mat44.inl:307
 
static Matrix sZero()
Definition: Matrix.h:32
 
bool SetInversed(const Matrix &inM)
Inverse matrix.
Definition: Matrix.h:200
 
void SetZero()
Zero matrix.
Definition: Matrix.h:26
 
bool IsZero() const
Check if this matrix consists of all zeros.
Definition: Matrix.h:35
 
The Body class only keeps track of state for static bodies, the MotionProperties class keeps the addi...
Definition: MotionProperties.h:29
 
void AddLinearVelocityStep(Vec3Arg inLinearVelocityChange)
Definition: MotionProperties.h:157
 
void SubLinearVelocityStep(Vec3Arg inLinearVelocityChange)
Definition: MotionProperties.h:158
 
float GetInverseMass() const
Get inverse mass (1 / mass). Should only be called on a dynamic object (static or kinematic bodies ha...
Definition: MotionProperties.h:95
 
void SubAngularVelocityStep(Vec3Arg inAngularVelocityChange)
Definition: MotionProperties.h:160
 
Mat44 GetInverseInertiaForRotation(Mat44Arg inRotation) const
Get inverse inertia matrix ( ) for a given object rotation (translation will be ignored)....
Definition: MotionProperties.inl:59
 
void AddAngularVelocityStep(Vec3Arg inAngularVelocityChange)
Definition: MotionProperties.h:159
 
Definition: StateRecorder.h:48
 
void Read(T &outT)
Read a primitive (e.g. float, int, etc.) from the binary stream.
Definition: StreamIn.h:29
 
void Write(const T &inT)
Write a primitive (e.g. float, int, etc.) to the binary stream.
Definition: StreamOut.h:26
 
JPH_INLINE float Dot(Vec3Arg inV2) const
Dot product.
Definition: Vec3.inl:637
 
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const
Cross product.
Definition: Vec3.inl:582
 
JPH_INLINE bool IsNormalized(float inTolerance=1.0e-6f) const
Test if vector is normalized.
Definition: Vec3.inl:737
 
static JPH_INLINE Vec3 sNaN()
Vector with all NaN's.
Definition: Vec3.inl:129
 
void SetZero()
Vector with all zeros.
Definition: Vector.h:22
 
bool IsZero() const
Test if vector consists of all zeros.
Definition: Vector.h:69
 
static Vector sZero()
Definition: Vector.h:28