Jolt Physics
A multi core friendly Game Physics Engine
Loading...
Searching...
No Matches
Quat.inl
Go to the documentation of this file.
1// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2// SPDX-FileCopyrightText: 2021 Jorrit Rouwe
3// SPDX-License-Identifier: MIT
4
6
8{
9#if defined(JPH_USE_SSE4_1)
10 // Taken from: http://momchil-velikov.blogspot.nl/2013/10/fast-sse-quternion-multiplication.html
11 __m128 abcd = mValue.mValue;
12 __m128 xyzw = inRHS.mValue.mValue;
13
14 __m128 t0 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(3, 3, 3, 3));
15 __m128 t1 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 3, 0, 1));
16
17 __m128 t3 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(0, 0, 0, 0));
18 __m128 t4 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(1, 0, 3, 2));
19
20 __m128 t5 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(1, 1, 1, 1));
21 __m128 t6 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(2, 0, 3, 1));
22
23 // [d,d,d,d] * [z,w,x,y] = [dz,dw,dx,dy]
24 __m128 m0 = _mm_mul_ps(t0, t1);
25
26 // [a,a,a,a] * [y,x,w,z] = [ay,ax,aw,az]
27 __m128 m1 = _mm_mul_ps(t3, t4);
28
29 // [b,b,b,b] * [z,x,w,y] = [bz,bx,bw,by]
30 __m128 m2 = _mm_mul_ps(t5, t6);
31
32 // [c,c,c,c] * [w,z,x,y] = [cw,cz,cx,cy]
33 __m128 t7 = _mm_shuffle_ps(abcd, abcd, _MM_SHUFFLE(2, 2, 2, 2));
34 __m128 t8 = _mm_shuffle_ps(xyzw, xyzw, _MM_SHUFFLE(3, 2, 0, 1));
35 __m128 m3 = _mm_mul_ps(t7, t8);
36
37 // [dz,dw,dx,dy] + -[ay,ax,aw,az] = [dz+ay,dw-ax,dx+aw,dy-az]
38 __m128 e = _mm_addsub_ps(m0, m1);
39
40 // [dx+aw,dz+ay,dy-az,dw-ax]
41 e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(1, 3, 0, 2));
42
43 // [dx+aw,dz+ay,dy-az,dw-ax] + -[bz,bx,bw,by] = [dx+aw+bz,dz+ay-bx,dy-az+bw,dw-ax-by]
44 e = _mm_addsub_ps(e, m2);
45
46 // [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz]
47 e = _mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 0, 1, 3));
48
49 // [dz+ay-bx,dw-ax-by,dy-az+bw,dx+aw+bz] + -[cw,cz,cx,cy] = [dz+ay-bx+cw,dw-ax-by-cz,dy-az+bw+cx,dx+aw+bz-cy]
50 e = _mm_addsub_ps(e, m3);
51
52 // [dw-ax-by-cz,dz+ay-bx+cw,dy-az+bw+cx,dx+aw+bz-cy]
53 return Quat(Vec4(_mm_shuffle_ps(e, e, _MM_SHUFFLE(2, 3, 1, 0))));
54#else
55 float lx = mValue.GetX();
56 float ly = mValue.GetY();
57 float lz = mValue.GetZ();
58 float lw = mValue.GetW();
59
60 float rx = inRHS.mValue.GetX();
61 float ry = inRHS.mValue.GetY();
62 float rz = inRHS.mValue.GetZ();
63 float rw = inRHS.mValue.GetW();
64
65 float x = lw * rx + lx * rw + ly * rz - lz * ry;
66 float y = lw * ry - lx * rz + ly * rw + lz * rx;
67 float z = lw * rz + lx * ry - ly * rx + lz * rw;
68 float w = lw * rw - lx * rx - ly * ry - lz * rz;
69
70 return Quat(x, y, z, w);
71#endif
72}
73
74Quat Quat::sRotation(Vec3Arg inAxis, float inAngle)
75{
76 // returns [inAxis * sin(0.5f * inAngle), cos(0.5f * inAngle)]
77 JPH_ASSERT(inAxis.IsNormalized());
78 Vec4 s, c;
79 Vec4::sReplicate(0.5f * inAngle).SinCos(s, c);
80 return Quat(Vec4::sSelect(Vec4(inAxis) * s, c, UVec4(0, 0, 0, 0xffffffffU)));
81}
82
83void Quat::GetAxisAngle(Vec3 &outAxis, float &outAngle) const
84{
86 Quat w_pos = EnsureWPositive();
87 float abs_w = w_pos.GetW();
88 if (abs_w >= 1.0f)
89 {
90 outAxis = Vec3::sZero();
91 outAngle = 0.0f;
92 }
93 else
94 {
95 outAngle = 2.0f * ACos(abs_w);
96 outAxis = w_pos.GetXYZ().NormalizedOr(Vec3::sZero());
97 }
98}
99
101{
102 /*
103 Uses (inFrom = v1, inTo = v2):
104
105 angle = arcos(v1 . v2 / |v1||v2|)
106 axis = normalize(v1 x v2)
107
108 Quaternion is then:
109
110 s = sin(angle / 2)
111 x = axis.x * s
112 y = axis.y * s
113 z = axis.z * s
114 w = cos(angle / 2)
115
116 Using identities:
117
118 sin(2 * a) = 2 * sin(a) * cos(a)
119 cos(2 * a) = cos(a)^2 - sin(a)^2
120 sin(a)^2 + cos(a)^2 = 1
121
122 This reduces to:
123
124 x = (v1 x v2).x
125 y = (v1 x v2).y
126 z = (v1 x v2).z
127 w = |v1||v2| + v1 . v2
128
129 which then needs to be normalized because the whole equation was multiplied by 2 cos(angle / 2)
130 */
131
132 float len_v1_v2 = sqrt(inFrom.LengthSq() * inTo.LengthSq());
133 float w = len_v1_v2 + inFrom.Dot(inTo);
134
135 if (w == 0.0f)
136 {
137 if (len_v1_v2 == 0.0f)
138 {
139 // If either of the vectors has zero length, there is no rotation and we return identity
140 return Quat::sIdentity();
141 }
142 else
143 {
144 // If vectors are perpendicular, take one of the many 180 degree rotations that exist
145 return Quat(Vec4(inFrom.GetNormalizedPerpendicular(), 0));
146 }
147 }
148
149 Vec3 v = inFrom.Cross(inTo);
150 return Quat(Vec4(v, w)).Normalized();
151}
152
153template <class Random>
154Quat Quat::sRandom(Random &inRandom)
155{
156 std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
157 float x0 = zero_to_one(inRandom);
158 float r1 = sqrt(1.0f - x0), r2 = sqrt(x0);
159 std::uniform_real_distribution<float> zero_to_two_pi(0.0f, 2.0f * JPH_PI);
160 Vec4 s, c;
161 Vec4(zero_to_two_pi(inRandom), zero_to_two_pi(inRandom), 0, 0).SinCos(s, c);
162 return Quat(s.GetX() * r1, c.GetX() * r1, s.GetY() * r2, c.GetY() * r2);
163}
164
166{
167 Vec4 half(0.5f * inAngles);
168 Vec4 s, c;
169 half.SinCos(s, c);
170
171 float cx = c.GetX();
172 float sx = s.GetX();
173 float cy = c.GetY();
174 float sy = s.GetY();
175 float cz = c.GetZ();
176 float sz = s.GetZ();
177
178 return Quat(
179 cz * sx * cy - sz * cx * sy,
180 cz * cx * sy + sz * sx * cy,
181 sz * cx * cy - cz * sx * sy,
182 cz * cx * cy + sz * sx * sy);
183}
184
186{
187 float y_sq = GetY() * GetY();
188
189 // X
190 float t0 = 2.0f * (GetW() * GetX() + GetY() * GetZ());
191 float t1 = 1.0f - 2.0f * (GetX() * GetX() + y_sq);
192
193 // Y
194 float t2 = 2.0f * (GetW() * GetY() - GetZ() * GetX());
195 t2 = t2 > 1.0f? 1.0f : t2;
196 t2 = t2 < -1.0f? -1.0f : t2;
197
198 // Z
199 float t3 = 2.0f * (GetW() * GetZ() + GetX() * GetY());
200 float t4 = 1.0f - 2.0f * (y_sq + GetZ() * GetZ());
201
202 return Vec3(ATan2(t0, t1), ASin(t2), ATan2(t3, t4));
203}
204
206{
207 Quat twist(Vec4(GetXYZ().Dot(inAxis) * inAxis, GetW()));
208 float twist_len = twist.LengthSq();
209 if (twist_len != 0.0f)
210 return twist / sqrt(twist_len);
211 else
212 return Quat::sIdentity();
213}
214
215void Quat::GetSwingTwist(Quat &outSwing, Quat &outTwist) const
216{
217 float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
218 float s = sqrt(Square(w) + Square(x));
219 if (s != 0.0f)
220 {
221 outTwist = Quat(x / s, 0, 0, w / s);
222 outSwing = Quat(0, (w * y - x * z) / s, (w * z + x * y) / s, s);
223 }
224 else
225 {
226 // If both x and w are zero, this must be a 180 degree rotation around either y or z
227 outTwist = Quat::sIdentity();
228 outSwing = *this;
229 }
230}
231
232Quat Quat::LERP(QuatArg inDestination, float inFraction) const
233{
234 float scale0 = 1.0f - inFraction;
235 return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(inFraction) * inDestination.mValue);
236}
237
238Quat Quat::SLERP(QuatArg inDestination, float inFraction) const
239{
240 // Difference at which to LERP instead of SLERP
241 const float delta = 0.0001f;
242
243 // Calc cosine
244 float sign_scale1 = 1.0f;
245 float cos_omega = Dot(inDestination);
246
247 // Adjust signs (if necessary)
248 if (cos_omega < 0.0f)
249 {
250 cos_omega = -cos_omega;
251 sign_scale1 = -1.0f;
252 }
253
254 // Calculate coefficients
255 float scale0, scale1;
256 if (1.0f - cos_omega > delta)
257 {
258 // Standard case (slerp)
259 float omega = ACos(cos_omega);
260 float sin_omega = Sin(omega);
261 scale0 = Sin((1.0f - inFraction) * omega) / sin_omega;
262 scale1 = sign_scale1 * Sin(inFraction * omega) / sin_omega;
263 }
264 else
265 {
266 // Quaternions are very close so we can do a linear interpolation
267 scale0 = 1.0f - inFraction;
268 scale1 = sign_scale1 * inFraction;
269 }
270
271 // Interpolate between the two quaternions
272 return Quat(Vec4::sReplicate(scale0) * mValue + Vec4::sReplicate(scale1) * inDestination.mValue).Normalized();
273}
274
276{
277 // Rotating a vector by a quaternion is done by: p' = q * p * q^-1 (q^-1 = conjugated(q) for a unit quaternion)
279 return Vec3((*this * Quat(Vec4(inValue, 0)) * Conjugated()).mValue);
280}
281
283{
285 return Vec3((Conjugated() * Quat(Vec4(inValue, 0)) * *this).mValue);
286}
287
289{
290 // This is *this * Vec3::sAxisX() written out:
292 float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
293 float tx = 2.0f * x, tw = 2.0f * w;
294 return Vec3(tx * x + tw * w - 1.0f, tx * y + z * tw, tx * z - y * tw);
295}
296
298{
299 // This is *this * Vec3::sAxisY() written out:
301 float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
302 float ty = 2.0f * y, tw = 2.0f * w;
303 return Vec3(x * ty - z * tw, tw * w + ty * y - 1.0f, x * tw + ty * z);
304}
305
307{
308 // This is *this * Vec3::sAxisZ() written out:
310 float x = GetX(), y = GetY(), z = GetZ(), w = GetW();
311 float tz = 2.0f * z, tw = 2.0f * w;
312 return Vec3(x * tz + y * tw, y * tz - x * tw, tw * w + tz * z - 1.0f);
313}
314
315void Quat::StoreFloat3(Float3 *outV) const
316{
319}
320
322{
324 float w = sqrt(max(1.0f - v.LengthSq(), 0.0f)); // It is possible that the length of v is a fraction above 1, and we don't want to introduce NaN's in that case so we clamp to 0
325 return Quat(Vec4(v, w));
326}
327
#define JPH_NAMESPACE_END
Definition Core.h:379
#define JPH_NAMESPACE_BEGIN
Definition Core.h:373
#define JPH_ASSERT(...)
Definition IssueReporting.h:33
JPH_INLINE constexpr T Square(T inV)
Square a value.
Definition Math.h:52
JPH_INLINE float ACos(float inX)
Definition Trigonometry.h:42
JPH_INLINE float ATan2(float inY, float inX)
Arc tangent of y / x using the signs of the arguments to determine the correct quadrant (returns valu...
Definition Trigonometry.h:74
JPH_NAMESPACE_BEGIN JPH_INLINE float Sin(float inX)
Sine of x (input in radians)
Definition Trigonometry.h:12
JPH_INLINE float ASin(float inX)
Definition Trigonometry.h:35
Class that holds 3 floats. Used as a storage class. Convert to Vec3 for calculations.
Definition Float3.h:13
Definition Quat.h:33
static Quat sRandom(Random &inRandom)
Random unit quaternion.
Definition Quat.inl:154
JPH_INLINE Vec3 InverseRotate(Vec3Arg inValue) const
Rotate a vector by the inverse of this quaternion.
Definition Quat.inl:282
JPH_INLINE float GetW() const
Get W component (real part)
Definition Quat.h:78
static Quat sEulerAngles(Vec3Arg inAngles)
Conversion from Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX)....
Definition Quat.inl:165
JPH_INLINE float GetY() const
Get Y component (imaginary part j)
Definition Quat.h:72
JPH_INLINE float GetZ() const
Get Z component (imaginary part k)
Definition Quat.h:75
static JPH_INLINE Quat sRotation(Vec3Arg inAxis, float inAngle)
Rotation from axis and angle.
Definition Quat.inl:74
JPH_INLINE float GetX() const
Get X component (imaginary part i)
Definition Quat.h:69
JPH_INLINE Quat LERP(QuatArg inDestination, float inFraction) const
Definition Quat.inl:232
static JPH_INLINE Quat sLoadFloat3Unsafe(const Float3 &inV)
Load 3 floats from memory (X, Y and Z component and then calculates W) reads 32 bits extra which it d...
Definition Quat.inl:321
JPH_INLINE float LengthSq() const
Definition Quat.h:132
JPH_INLINE void GetAxisAngle(Vec3 &outAxis, float &outAngle) const
Get axis and angle that represents this quaternion, outAngle will always be in the range .
Definition Quat.inl:83
static JPH_INLINE Quat sIdentity()
Definition Quat.h:103
JPH_INLINE void GetSwingTwist(Quat &outSwing, Quat &outTwist) const
Definition Quat.inl:215
static JPH_INLINE Quat sFromTo(Vec3Arg inFrom, Vec3Arg inTo)
Definition Quat.inl:100
friend Quat operator*(float inValue, QuatArg inRHS)
Definition Quat.h:154
JPH_INLINE Quat EnsureWPositive() const
Ensures that the W component is positive by negating the entire quaternion if it is not....
Definition Quat.h:184
JPH_INLINE Quat GetTwist(Vec3Arg inAxis) const
Definition Quat.inl:205
JPH_INLINE float Dot(QuatArg inRHS) const
Dot product.
Definition Quat.h:175
Quat()=default
Intentionally not initialized for performance reasons.
JPH_INLINE Vec3 RotateAxisZ() const
Rotate a the vector (0, 0, 1) with this quaternion.
Definition Quat.inl:306
JPH_INLINE Quat Conjugated() const
The conjugate [w, -x, -y, -z] is the same as the inverse for unit quaternions.
Definition Quat.h:178
JPH_INLINE Vec3 RotateAxisX() const
Rotate a the vector (1, 0, 0) with this quaternion.
Definition Quat.inl:288
JPH_INLINE Vec3 RotateAxisY() const
Rotate a the vector (0, 1, 0) with this quaternion.
Definition Quat.inl:297
Vec3 GetEulerAngles() const
Conversion to Euler angles. Rotation order is X then Y then Z (RotZ * RotY * RotX)....
Definition Quat.inl:185
bool IsNormalized(float inTolerance=1.0e-5f) const
If the length of this quaternion is 1 +/- inTolerance.
Definition Quat.h:59
JPH_INLINE void StoreFloat3(Float3 *outV) const
Store 3 as floats to memory (X, Y and Z component)
Definition Quat.inl:315
JPH_INLINE Vec3 GetXYZ() const
Get the imaginary part of the quaternion.
Definition Quat.h:81
Vec4 mValue
4 vector that stores [x, y, z, w] parts of the quaternion
Definition Quat.h:248
JPH_INLINE Quat SLERP(QuatArg inDestination, float inFraction) const
Definition Quat.inl:238
Definition UVec4.h:12
Definition Vec3.h:17
JPH_INLINE float Dot(Vec3Arg inV2) const
Dot product.
Definition Vec3.inl:649
JPH_INLINE Vec3 Normalized() const
Normalize vector.
Definition Vec3.inl:706
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const
Cross product.
Definition Vec3.inl:594
JPH_INLINE Vec3 GetNormalizedPerpendicular() const
Get normalized vector that is perpendicular to this vector.
Definition Vec3.inl:826
JPH_INLINE bool IsNormalized(float inTolerance=1.0e-6f) const
Test if vector is normalized.
Definition Vec3.inl:751
JPH_INLINE Vec3 NormalizedOr(Vec3Arg inZeroValue) const
Normalize vector or return inZeroValue if the length of the vector is zero.
Definition Vec3.inl:720
JPH_INLINE void StoreFloat3(Float3 *outV) const
Store 3 floats to memory.
Definition Vec3.inl:771
JPH_INLINE float LengthSq() const
Squared length of vector.
Definition Vec3.inl:665
static JPH_INLINE Vec3 sZero()
Vector with all zeros.
Definition Vec3.inl:107
static JPH_INLINE Vec3 sLoadFloat3Unsafe(const Float3 &inV)
Load 3 floats from memory (reads 32 bits extra which it doesn't use)
Definition Vec3.inl:134
Definition Vec4.h:14
JPH_INLINE float GetW() const
Definition Vec4.h:116
JPH_INLINE float GetX() const
Get individual components.
Definition Vec4.h:113
Type mValue
Definition Vec4.h:274
JPH_INLINE float GetZ() const
Definition Vec4.h:115
static JPH_INLINE Vec4 sSelect(Vec4Arg inNotSet, Vec4Arg inSet, UVec4Arg inControl)
Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit ...
Definition Vec4.inl:254
JPH_INLINE float GetY() const
Definition Vec4.h:114
static JPH_INLINE Vec4 sReplicate(float inV)
Replicate inV across all components.
Definition Vec4.inl:74
void SinCos(Vec4 &outSin, Vec4 &outCos) const
Calculate the sine and cosine for each element of this vector (input in radians)
Definition Vec4.inl:778