Jolt Physics
A multi core friendly Game Physics Engine
Loading...
Searching...
No Matches
HashTable.h
Go to the documentation of this file.
1// Jolt Physics Library (https://github.com/jrouwe/JoltPhysics)
2// SPDX-FileCopyrightText: 2024 Jorrit Rouwe
3// SPDX-License-Identifier: MIT
4
5#pragma once
6
7#include <Jolt/Math/BVec16.h>
8
10
14template <class Key, class KeyValue, class HashTableDetail, class Hash, class KeyEqual>
16{
17public:
19 using value_type = KeyValue;
21 using difference_type = ptrdiff_t;
22
23private:
25 template <class Table, class Iterator>
26 class IteratorBase
27 {
28 public:
30 using difference_type = typename Table::difference_type;
31 using value_type = typename Table::value_type;
32 using iterator_category = std::forward_iterator_tag;
33
35 IteratorBase(const IteratorBase &inRHS) = default;
36
38 IteratorBase & operator = (const IteratorBase &inRHS) = default;
39
41 explicit IteratorBase(Table *inTable) :
42 mTable(inTable),
43 mIndex(0)
44 {
45 while (mIndex < mTable->mMaxSize && (mTable->mControl[mIndex] & cBucketUsed) == 0)
46 ++mIndex;
47 }
48
50 IteratorBase(Table *inTable, size_type inIndex) :
51 mTable(inTable),
52 mIndex(inIndex)
53 {
54 }
55
57 Iterator & operator ++ ()
58 {
59 JPH_ASSERT(IsValid());
60
61 do
62 {
63 ++mIndex;
64 }
65 while (mIndex < mTable->mMaxSize && (mTable->mControl[mIndex] & cBucketUsed) == 0);
66
67 return static_cast<Iterator &>(*this);
68 }
69
71 Iterator operator ++ (int)
72 {
73 Iterator result(mTable, mIndex);
74 ++(*this);
75 return result;
76 }
77
79 const KeyValue & operator * () const
80 {
81 JPH_ASSERT(IsValid());
82 return mTable->mData[mIndex];
83 }
84
86 const KeyValue * operator -> () const
87 {
88 JPH_ASSERT(IsValid());
89 return mTable->mData + mIndex;
90 }
91
93 bool operator == (const Iterator &inRHS) const
94 {
95 return mIndex == inRHS.mIndex && mTable == inRHS.mTable;
96 }
97
99 bool operator != (const Iterator &inRHS) const
100 {
101 return !(*this == inRHS);
102 }
103
105 bool IsValid() const
106 {
107 return mIndex < mTable->mMaxSize
108 && (mTable->mControl[mIndex] & cBucketUsed) != 0;
109 }
110
111 Table * mTable;
112 size_type mIndex;
113 };
114
116 static constexpr size_type sGetMaxLoad(size_type inBucketCount)
117 {
118 return uint32((cMaxLoadFactorNumerator * inBucketCount) / cMaxLoadFactorDenominator);
119 }
120
122 JPH_INLINE void SetControlValue(size_type inIndex, uint8 inValue)
123 {
124 JPH_ASSERT(inIndex < mMaxSize);
125 mControl[inIndex] = inValue;
126
127 // Mirror the first 15 bytes to the 15 bytes beyond mMaxSize
128 // Note that this is equivalent to:
129 // if (inIndex < 15)
130 // mControl[inIndex + mMaxSize] = inValue
131 // else
132 // mControl[inIndex] = inValue
133 // Which performs a needless write if inIndex >= 15 but at least it is branch-less
134 mControl[((inIndex - 15) & (mMaxSize - 1)) + 15] = inValue;
135 }
136
138 JPH_INLINE void GetIndexAndControlValue(const Key &inKey, size_type &outIndex, uint8 &outControl) const
139 {
140 // Calculate hash
141 uint64 hash_value = Hash { } (inKey);
142
143 // Split hash into index and control value
144 outIndex = size_type(hash_value >> 7) & (mMaxSize - 1);
145 outControl = cBucketUsed | uint8(hash_value);
146 }
147
149 void AllocateTable(size_type inMaxSize)
150 {
151 JPH_ASSERT(mData == nullptr);
152
153 mMaxSize = inMaxSize;
154 mLoadLeft = sGetMaxLoad(inMaxSize);
155 size_t required_size = size_t(mMaxSize) * (sizeof(KeyValue) + 1) + 15; // Add 15 bytes to mirror the first 15 bytes of the control values
156 if constexpr (cNeedsAlignedAllocate)
157 mData = reinterpret_cast<KeyValue *>(AlignedAllocate(required_size, alignof(KeyValue)));
158 else
159 mData = reinterpret_cast<KeyValue *>(Allocate(required_size));
160 mControl = reinterpret_cast<uint8 *>(mData + mMaxSize);
161 }
162
164 void CopyTable(const HashTable &inRHS)
165 {
166 if (inRHS.empty())
167 return;
168
169 AllocateTable(inRHS.mMaxSize);
170
171 // Copy control bytes
172 memcpy(mControl, inRHS.mControl, mMaxSize + 15);
173
174 // Copy elements
175 uint index = 0;
176 for (const uint8 *control = mControl, *control_end = mControl + mMaxSize; control != control_end; ++control, ++index)
177 if (*control & cBucketUsed)
178 new (mData + index) KeyValue(inRHS.mData[index]);
179 mSize = inRHS.mSize;
180 }
181
183 void GrowTable(size_type inNewMaxSize)
184 {
185 // Move the old table to a temporary structure
186 size_type old_max_size = mMaxSize;
187 KeyValue *old_data = mData;
188 const uint8 *old_control = mControl;
189 mData = nullptr;
190 mControl = nullptr;
191 mSize = 0;
192 mMaxSize = 0;
193 mLoadLeft = 0;
194
195 // Allocate new table
196 AllocateTable(inNewMaxSize);
197
198 // Reset all control bytes
199 memset(mControl, cBucketEmpty, mMaxSize + 15);
200
201 if (old_data != nullptr)
202 {
203 // Copy all elements from the old table
204 for (size_type i = 0; i < old_max_size; ++i)
205 if (old_control[i] & cBucketUsed)
206 {
207 size_type index;
208 KeyValue *element = old_data + i;
209 JPH_IF_ENABLE_ASSERTS(bool inserted =) InsertKey</* InsertAfterGrow= */ true>(HashTableDetail::sGetKey(*element), index);
210 JPH_ASSERT(inserted);
211 new (mData + index) KeyValue(std::move(*element));
212 element->~KeyValue();
213 }
214
215 // Free memory
216 if constexpr (cNeedsAlignedAllocate)
217 AlignedFree(old_data);
218 else
219 Free(old_data);
220 }
221 }
222
223protected:
225 KeyValue & GetElement(size_type inIndex) const
226 {
227 return mData[inIndex];
228 }
229
232 template <bool InsertAfterGrow = false>
233 bool InsertKey(const Key &inKey, size_type &outIndex)
234 {
235 // Ensure we have enough space
236 if (mLoadLeft == 0)
237 {
238 // Should not be growing if we're already growing!
239 if constexpr (InsertAfterGrow)
240 JPH_ASSERT(false);
241
242 // Decide if we need to clean up all tombstones or if we need to grow the map
243 size_type num_deleted = sGetMaxLoad(mMaxSize) - mSize;
244 if (num_deleted * cMaxDeletedElementsDenominator > mMaxSize * cMaxDeletedElementsNumerator)
245 rehash(0);
246 else
247 {
248 // Grow by a power of 2
249 size_type new_max_size = max<size_type>(mMaxSize << 1, 16);
250 if (new_max_size < mMaxSize)
251 {
252 JPH_ASSERT(false, "Overflow in hash table size, can't grow!");
253 return false;
254 }
255 GrowTable(new_max_size);
256 }
257 }
258
259 // Split hash into index and control value
260 size_type index;
261 uint8 control;
262 GetIndexAndControlValue(inKey, index, control);
263
264 // Keeps track of the index of the first deleted bucket we found
265 constexpr size_type cNoDeleted = ~size_type(0);
266 size_type first_deleted_index = cNoDeleted;
267
268 // Linear probing
269 KeyEqual equal;
270 size_type bucket_mask = mMaxSize - 1;
271 BVec16 control16 = BVec16::sReplicate(control);
272 BVec16 bucket_empty = BVec16::sZero();
273 BVec16 bucket_deleted = BVec16::sReplicate(cBucketDeleted);
274 for (;;)
275 {
276 // Read 16 control values (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
277 BVec16 control_bytes = BVec16::sLoadByte16(mControl + index);
278
279 // Check if we must find the element before we can insert
280 if constexpr (!InsertAfterGrow)
281 {
282 // Check for the control value we're looking for
283 // Note that when deleting we can create empty buckets instead of deleted buckets.
284 // This means we must unconditionally check all buckets in this batch for equality
285 // (also beyond the first empty bucket).
286 uint32 control_equal = uint32(BVec16::sEquals(control_bytes, control16).GetTrues());
287
288 // Index within the 16 buckets
289 size_type local_index = index;
290
291 // Loop while there's still buckets to process
292 while (control_equal != 0)
293 {
294 // Get the first equal bucket
295 uint first_equal = CountTrailingZeros(control_equal);
296
297 // Skip to the bucket
298 local_index += first_equal;
299
300 // Make sure that our index is not beyond the end of the table
301 local_index &= bucket_mask;
302
303 // We found a bucket with same control value
304 if (equal(HashTableDetail::sGetKey(mData[local_index]), inKey))
305 {
306 // Element already exists
307 outIndex = local_index;
308 return false;
309 }
310
311 // Skip past this bucket
312 control_equal >>= first_equal + 1;
313 local_index++;
314 }
315
316 // Check if we're still scanning for deleted buckets
317 if (first_deleted_index == cNoDeleted)
318 {
319 // Check if any buckets have been deleted, if so store the first one
320 uint32 control_deleted = uint32(BVec16::sEquals(control_bytes, bucket_deleted).GetTrues());
321 if (control_deleted != 0)
322 first_deleted_index = index + CountTrailingZeros(control_deleted);
323 }
324 }
325
326 // Check for empty buckets
327 uint32 control_empty = uint32(BVec16::sEquals(control_bytes, bucket_empty).GetTrues());
328 if (control_empty != 0)
329 {
330 // If we found a deleted bucket, use it.
331 // It doesn't matter if it is before or after the first empty bucket we found
332 // since we will always be scanning in batches of 16 buckets.
333 if (first_deleted_index == cNoDeleted || InsertAfterGrow)
334 {
335 index += CountTrailingZeros(control_empty);
336 --mLoadLeft; // Using an empty bucket decreases the load left
337 }
338 else
339 {
340 index = first_deleted_index;
341 }
342
343 // Make sure that our index is not beyond the end of the table
344 index &= bucket_mask;
345
346 // Update control byte
347 SetControlValue(index, control);
348 ++mSize;
349
350 // Return index to newly allocated bucket
351 outIndex = index;
352 return true;
353 }
354
355 // Move to next batch of 16 buckets
356 index = (index + 16) & bucket_mask;
357 }
358 }
359
360public:
362 class iterator : public IteratorBase<HashTable, iterator>
363 {
364 using Base = IteratorBase<HashTable, iterator>;
365
366 public:
368 using reference = typename Base::value_type &;
369 using pointer = typename Base::value_type *;
370
372 explicit iterator(HashTable *inTable) : Base(inTable) { }
373 iterator(HashTable *inTable, size_type inIndex) : Base(inTable, inIndex) { }
374 iterator(const iterator &inIterator) : Base(inIterator) { }
375
377 iterator & operator = (const iterator &inRHS) { Base::operator = (inRHS); return *this; }
378
379 using Base::operator *;
380
382 KeyValue & operator * ()
383 {
384 JPH_ASSERT(this->IsValid());
385 return this->mTable->mData[this->mIndex];
386 }
387
388 using Base::operator ->;
389
391 KeyValue * operator -> ()
392 {
393 JPH_ASSERT(this->IsValid());
394 return this->mTable->mData + this->mIndex;
395 }
396 };
397
399 class const_iterator : public IteratorBase<const HashTable, const_iterator>
400 {
401 using Base = IteratorBase<const HashTable, const_iterator>;
402
403 public:
405 using reference = const typename Base::value_type &;
406 using pointer = const typename Base::value_type *;
407
409 explicit const_iterator(const HashTable *inTable) : Base(inTable) { }
410 const_iterator(const HashTable *inTable, size_type inIndex) : Base(inTable, inIndex) { }
411 const_iterator(const const_iterator &inRHS) : Base(inRHS) { }
412 const_iterator(const iterator &inIterator) : Base(inIterator.mTable, inIterator.mIndex) { }
413
415 const_iterator & operator = (const iterator &inRHS) { this->mTable = inRHS.mTable; this->mIndex = inRHS.mIndex; return *this; }
416 const_iterator & operator = (const const_iterator &inRHS) { Base::operator = (inRHS); return *this; }
417 };
418
420 HashTable() = default;
421
423 HashTable(const HashTable &inRHS)
424 {
425 CopyTable(inRHS);
426 }
427
429 HashTable(HashTable &&ioRHS) noexcept :
430 mData(ioRHS.mData),
431 mControl(ioRHS.mControl),
432 mSize(ioRHS.mSize),
433 mMaxSize(ioRHS.mMaxSize),
434 mLoadLeft(ioRHS.mLoadLeft)
435 {
436 ioRHS.mData = nullptr;
437 ioRHS.mControl = nullptr;
438 ioRHS.mSize = 0;
439 ioRHS.mMaxSize = 0;
440 ioRHS.mLoadLeft = 0;
441 }
442
445 {
446 if (this != &inRHS)
447 {
448 clear();
449
450 CopyTable(inRHS);
451 }
452
453 return *this;
454 }
455
457 HashTable & operator = (HashTable &&ioRHS) noexcept
458 {
459 if (this != &ioRHS)
460 {
461 clear();
462
463 mData = ioRHS.mData;
464 mControl = ioRHS.mControl;
465 mSize = ioRHS.mSize;
466 mMaxSize = ioRHS.mMaxSize;
467 mLoadLeft = ioRHS.mLoadLeft;
468
469 ioRHS.mData = nullptr;
470 ioRHS.mControl = nullptr;
471 ioRHS.mSize = 0;
472 ioRHS.mMaxSize = 0;
473 ioRHS.mLoadLeft = 0;
474 }
475
476 return *this;
477 }
478
481 {
482 clear();
483 }
484
486 void reserve(size_type inMaxSize)
487 {
488 // Calculate max size based on load factor
489 size_type max_size = GetNextPowerOf2(max<uint32>((cMaxLoadFactorDenominator * inMaxSize) / cMaxLoadFactorNumerator, 16));
490 if (max_size <= mMaxSize)
491 return;
492
493 GrowTable(max_size);
494 }
495
497 void clear()
498 {
499 // Delete all elements
500 if constexpr (!std::is_trivially_destructible<KeyValue>())
501 if (!empty())
502 for (size_type i = 0; i < mMaxSize; ++i)
503 if (mControl[i] & cBucketUsed)
504 mData[i].~KeyValue();
505
506 if (mData != nullptr)
507 {
508 // Free memory
509 if constexpr (cNeedsAlignedAllocate)
510 AlignedFree(mData);
511 else
512 Free(mData);
513
514 // Reset members
515 mData = nullptr;
516 mControl = nullptr;
517 mSize = 0;
518 mMaxSize = 0;
519 mLoadLeft = 0;
520 }
521 }
522
525 {
526 // Destruct elements
527 if constexpr (!std::is_trivially_destructible<KeyValue>())
528 if (!empty())
529 for (size_type i = 0; i < mMaxSize; ++i)
530 if (mControl[i] & cBucketUsed)
531 mData[i].~KeyValue();
532 mSize = 0;
533
534 // If there are elements that are not marked cBucketEmpty, we reset them
535 size_type max_load = sGetMaxLoad(mMaxSize);
536 if (mLoadLeft != max_load)
537 {
538 // Reset all control bytes
539 memset(mControl, cBucketEmpty, mMaxSize + 15);
540 mLoadLeft = max_load;
541 }
542 }
543
546 {
547 return iterator(this);
548 }
549
552 {
553 return iterator(this, mMaxSize);
554 }
555
558 {
559 return const_iterator(this);
560 }
561
564 {
565 return const_iterator(this, mMaxSize);
566 }
567
570 {
571 return const_iterator(this);
572 }
573
576 {
577 return const_iterator(this, mMaxSize);
578 }
579
582 {
583 return mMaxSize;
584 }
585
587 constexpr size_type max_bucket_count() const
588 {
589 return size_type(1) << (sizeof(size_type) * 8 - 1);
590 }
591
593 bool empty() const
594 {
595 return mSize == 0;
596 }
597
600 {
601 return mSize;
602 }
603
605 constexpr size_type max_size() const
606 {
607 return size_type((uint64(max_bucket_count()) * cMaxLoadFactorNumerator) / cMaxLoadFactorDenominator);
608 }
609
611 constexpr float max_load_factor() const
612 {
613 return float(cMaxLoadFactorNumerator) / float(cMaxLoadFactorDenominator);
614 }
615
617 std::pair<iterator, bool> insert(const value_type &inValue)
618 {
619 size_type index;
620 bool inserted = InsertKey(HashTableDetail::sGetKey(inValue), index);
621 if (inserted)
622 new (mData + index) KeyValue(inValue);
623 return std::make_pair(iterator(this, index), inserted);
624 }
625
627 const_iterator find(const Key &inKey) const
628 {
629 // Check if we have any data
630 if (empty())
631 return cend();
632
633 // Split hash into index and control value
634 size_type index;
635 uint8 control;
636 GetIndexAndControlValue(inKey, index, control);
637
638 // Linear probing
639 KeyEqual equal;
640 size_type bucket_mask = mMaxSize - 1;
641 BVec16 control16 = BVec16::sReplicate(control);
642 BVec16 bucket_empty = BVec16::sZero();
643 for (;;)
644 {
645 // Read 16 control values
646 // (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
647 BVec16 control_bytes = BVec16::sLoadByte16(mControl + index);
648
649 // Check for the control value we're looking for
650 // Note that when deleting we can create empty buckets instead of deleted buckets.
651 // This means we must unconditionally check all buckets in this batch for equality
652 // (also beyond the first empty bucket).
653 uint32 control_equal = uint32(BVec16::sEquals(control_bytes, control16).GetTrues());
654
655 // Index within the 16 buckets
656 size_type local_index = index;
657
658 // Loop while there's still buckets to process
659 while (control_equal != 0)
660 {
661 // Get the first equal bucket
662 uint first_equal = CountTrailingZeros(control_equal);
663
664 // Skip to the bucket
665 local_index += first_equal;
666
667 // Make sure that our index is not beyond the end of the table
668 local_index &= bucket_mask;
669
670 // We found a bucket with same control value
671 if (equal(HashTableDetail::sGetKey(mData[local_index]), inKey))
672 {
673 // Element found
674 return const_iterator(this, local_index);
675 }
676
677 // Skip past this bucket
678 control_equal >>= first_equal + 1;
679 local_index++;
680 }
681
682 // Check for empty buckets
683 uint32 control_empty = uint32(BVec16::sEquals(control_bytes, bucket_empty).GetTrues());
684 if (control_empty != 0)
685 {
686 // An empty bucket was found, we didn't find the element
687 return cend();
688 }
689
690 // Move to next batch of 16 buckets
691 index = (index + 16) & bucket_mask;
692 }
693 }
694
696 void erase(const const_iterator &inIterator)
697 {
698 JPH_ASSERT(inIterator.IsValid());
699
700 // Read 16 control values before and after the current index
701 // (note that we added 15 bytes at the end of the control values that mirror the first 15 bytes)
702 BVec16 control_bytes_before = BVec16::sLoadByte16(mControl + ((inIterator.mIndex - 16) & (mMaxSize - 1)));
703 BVec16 control_bytes_after = BVec16::sLoadByte16(mControl + inIterator.mIndex);
704 BVec16 bucket_empty = BVec16::sZero();
705 uint32 control_empty_before = uint32(BVec16::sEquals(control_bytes_before, bucket_empty).GetTrues());
706 uint32 control_empty_after = uint32(BVec16::sEquals(control_bytes_after, bucket_empty).GetTrues());
707
708 // If (this index including) there exist 16 consecutive non-empty slots (represented by a bit being 0) then
709 // a probe looking for some element needs to continue probing so we cannot mark the bucket as empty
710 // but must mark it as deleted instead.
711 // Note that we use: CountLeadingZeros(uint16) = CountLeadingZeros(uint32) - 16.
712 uint8 control_value = CountLeadingZeros(control_empty_before) - 16 + CountTrailingZeros(control_empty_after) < 16? cBucketEmpty : cBucketDeleted;
713
714 // Mark the bucket as empty/deleted
715 SetControlValue(inIterator.mIndex, control_value);
716
717 // Destruct the element
718 mData[inIterator.mIndex].~KeyValue();
719
720 // If we marked the bucket as empty we can increase the load left
721 if (control_value == cBucketEmpty)
722 ++mLoadLeft;
723
724 // Decrease size
725 --mSize;
726 }
727
729 size_type erase(const Key &inKey)
730 {
731 const_iterator it = find(inKey);
732 if (it == cend())
733 return 0;
734
735 erase(it);
736 return 1;
737 }
738
740 void swap(HashTable &ioRHS) noexcept
741 {
742 std::swap(mData, ioRHS.mData);
743 std::swap(mControl, ioRHS.mControl);
744 std::swap(mSize, ioRHS.mSize);
745 std::swap(mMaxSize, ioRHS.mMaxSize);
746 std::swap(mLoadLeft, ioRHS.mLoadLeft);
747 }
748
752 {
753 // Update the control value for all buckets
754 for (size_type i = 0; i < mMaxSize; ++i)
755 {
756 uint8 &control = mControl[i];
757 switch (control)
758 {
759 case cBucketDeleted:
760 // Deleted buckets become empty
761 control = cBucketEmpty;
762 break;
763 case cBucketEmpty:
764 // Remains empty
765 break;
766 default:
767 // Mark all occupied as deleted, to indicate it needs to move to the correct place
768 control = cBucketDeleted;
769 break;
770 }
771 }
772
773 // Replicate control values to the last 15 entries
774 for (size_type i = 0; i < 15; ++i)
775 mControl[mMaxSize + i] = mControl[i];
776
777 // Loop over all elements that have been 'deleted' and move them to their new spot
778 BVec16 bucket_used = BVec16::sReplicate(cBucketUsed);
779 size_type bucket_mask = mMaxSize - 1;
780 uint32 probe_mask = bucket_mask & ~uint32(0b1111); // Mask out lower 4 bits because we test 16 buckets at a time
781 for (size_type src = 0; src < mMaxSize; ++src)
782 if (mControl[src] == cBucketDeleted)
783 for (;;)
784 {
785 // Split hash into index and control value
786 size_type src_index;
787 uint8 src_control;
788 GetIndexAndControlValue(HashTableDetail::sGetKey(mData[src]), src_index, src_control);
789
790 // Linear probing
791 size_type dst = src_index;
792 for (;;)
793 {
794 // Check if any buckets are free
795 BVec16 control_bytes = BVec16::sLoadByte16(mControl + dst);
796 uint32 control_free = uint32(BVec16::sAnd(control_bytes, bucket_used).GetTrues()) ^ 0xffff;
797 if (control_free != 0)
798 {
799 // Select this bucket as destination
800 dst += CountTrailingZeros(control_free);
801 dst &= bucket_mask;
802 break;
803 }
804
805 // Move to next batch of 16 buckets
806 dst = (dst + 16) & bucket_mask;
807 }
808
809 // Check if we stay in the same probe group
810 if (((dst - src_index) & probe_mask) == ((src - src_index) & probe_mask))
811 {
812 // We stay in the same group, we can stay where we are
813 SetControlValue(src, src_control);
814 break;
815 }
816 else if (mControl[dst] == cBucketEmpty)
817 {
818 // There's an empty bucket, move us there
819 SetControlValue(dst, src_control);
820 SetControlValue(src, cBucketEmpty);
821 new (mData + dst) KeyValue(std::move(mData[src]));
822 mData[src].~KeyValue();
823 break;
824 }
825 else
826 {
827 // There's an element in the bucket we want to move to, swap them
828 JPH_ASSERT(mControl[dst] == cBucketDeleted);
829 SetControlValue(dst, src_control);
830 std::swap(mData[src], mData[dst]);
831 // Iterate again with the same source bucket
832 }
833 }
834
835 // Reinitialize load left
836 mLoadLeft = sGetMaxLoad(mMaxSize) - mSize;
837 }
838
839private:
841 static constexpr bool cNeedsAlignedAllocate = alignof(KeyValue) > (JPH_CPU_ADDRESS_BITS == 32? 8 : 16);
842
844 static constexpr uint64 cMaxLoadFactorNumerator = 7;
845 static constexpr uint64 cMaxLoadFactorDenominator = 8;
846
848 static constexpr uint64 cMaxDeletedElementsNumerator = 1;
849 static constexpr uint64 cMaxDeletedElementsDenominator = 8;
850
852 static constexpr uint8 cBucketEmpty = 0;
853 static constexpr uint8 cBucketDeleted = 0x7f;
854 static constexpr uint8 cBucketUsed = 0x80; // Lowest 7 bits are lowest 7 bits of the hash value
855
857 KeyValue * mData = nullptr;
858
860 uint8 * mControl = nullptr;
861
863 size_type mSize = 0;
864
866 size_type mMaxSize = 0;
867
869 size_type mLoadLeft = 0;
870};
871
std::uint8_t uint8
Definition Core.h:487
std::uint64_t uint64
Definition Core.h:490
unsigned int uint
Definition Core.h:486
#define JPH_NAMESPACE_END
Definition Core.h:418
std::uint32_t uint32
Definition Core.h:489
#define JPH_NAMESPACE_BEGIN
Definition Core.h:412
#define JPH_IF_ENABLE_ASSERTS(...)
Definition IssueReporting.h:35
#define JPH_ASSERT(...)
Definition IssueReporting.h:33
uint CountTrailingZeros(uint32 inValue)
Compute number of trailing zero bits (how many low bits are zero)
Definition Math.h:98
uint CountLeadingZeros(uint32 inValue)
Compute the number of leading zero bits (how many high bits are zero)
Definition Math.h:134
uint32 GetNextPowerOf2(uint32 inValue)
Get the next higher power of 2 of a value, or the value itself if the value is already a power of 2.
Definition Math.h:185
AllocateFunction Allocate
Definition Memory.cpp:68
FreeFunction Free
Definition Memory.cpp:70
AlignedFreeFunction AlignedFree
Definition Memory.cpp:72
AlignedAllocateFunction AlignedAllocate
Definition Memory.cpp:71
A vector consisting of 16 bytes.
Definition BVec16.h:11
static JPH_INLINE BVec16 sZero()
Vector with all zeros.
Definition BVec16.inl:46
static JPH_INLINE BVec16 sEquals(BVec16Arg inV1, BVec16Arg inV2)
Equals (component wise), highest bit of each component that is set is considered true.
Definition BVec16.inl:83
static JPH_INLINE BVec16 sReplicate(uint8 inV)
Replicate int inV across all components.
Definition BVec16.inl:57
static JPH_INLINE BVec16 sAnd(BVec16Arg inV1, BVec16Arg inV2)
Logical and (component wise)
Definition BVec16.inl:124
static JPH_INLINE BVec16 sLoadByte16(const uint8 *inV)
Load 16 bytes from memory.
Definition BVec16.inl:72
Const iterator.
Definition HashTable.h:400
const_iterator(const HashTable *inTable, size_type inIndex)
Definition HashTable.h:410
const_iterator & operator=(const iterator &inRHS)
Assignment.
Definition HashTable.h:415
const typename Base::value_type * pointer
Definition HashTable.h:406
const_iterator(const iterator &inIterator)
Definition HashTable.h:412
const_iterator(const HashTable *inTable)
Constructors.
Definition HashTable.h:409
const typename Base::value_type & reference
Properties.
Definition HashTable.h:405
const_iterator(const const_iterator &inRHS)
Definition HashTable.h:411
Non-const iterator.
Definition HashTable.h:363
typename Base::value_type * pointer
Definition HashTable.h:369
typename Base::value_type & reference
Properties.
Definition HashTable.h:368
KeyValue & operator*()
Non-const access to key value pair.
Definition HashTable.h:382
KeyValue * operator->()
Non-const access to key value pair.
Definition HashTable.h:391
iterator(HashTable *inTable)
Constructors.
Definition HashTable.h:372
iterator & operator=(const iterator &inRHS)
Assignment.
Definition HashTable.h:377
iterator(HashTable *inTable, size_type inIndex)
Definition HashTable.h:373
iterator(const iterator &inIterator)
Definition HashTable.h:374
Definition HashTable.h:16
void reserve(size_type inMaxSize)
Reserve memory for a certain number of elements.
Definition HashTable.h:486
ptrdiff_t difference_type
Definition HashTable.h:21
void clear()
Destroy the entire hash table.
Definition HashTable.h:497
KeyValue & GetElement(size_type inIndex) const
Get an element by index.
Definition HashTable.h:225
iterator end()
Iterator to one beyond last element.
Definition HashTable.h:551
constexpr size_type max_bucket_count() const
Max number of buckets that the table can have.
Definition HashTable.h:587
HashTable(const HashTable &inRHS)
Copy constructor.
Definition HashTable.h:423
size_type size() const
Number of elements in the table.
Definition HashTable.h:599
HashTable()=default
Default constructor.
void swap(HashTable &ioRHS) noexcept
Swap the contents of two hash tables.
Definition HashTable.h:740
const_iterator cbegin() const
Iterator to first element.
Definition HashTable.h:569
~HashTable()
Destructor.
Definition HashTable.h:480
iterator begin()
Iterator to first element.
Definition HashTable.h:545
const_iterator end() const
Iterator to one beyond last element.
Definition HashTable.h:563
const_iterator find(const Key &inKey) const
Find an element, returns iterator to element or end() if not found.
Definition HashTable.h:627
const_iterator cend() const
Iterator to one beyond last element.
Definition HashTable.h:575
HashTable(HashTable &&ioRHS) noexcept
Move constructor.
Definition HashTable.h:429
constexpr size_type max_size() const
Max number of elements that the table can hold.
Definition HashTable.h:605
KeyValue value_type
Properties.
Definition HashTable.h:19
bool InsertKey(const Key &inKey, size_type &outIndex)
Definition HashTable.h:233
void ClearAndKeepMemory()
Destroy the entire hash table but keeps the memory allocated.
Definition HashTable.h:524
uint32 size_type
Definition HashTable.h:20
bool empty() const
Check if there are no elements in the table.
Definition HashTable.h:593
constexpr float max_load_factor() const
Get the max load factor for this table (max number of elements / number of buckets)
Definition HashTable.h:611
void rehash(size_type)
Definition HashTable.h:751
std::pair< iterator, bool > insert(const value_type &inValue)
Insert a new element, returns iterator and if the element was inserted.
Definition HashTable.h:617
void erase(const const_iterator &inIterator)
Erase an element by iterator.
Definition HashTable.h:696
const_iterator begin() const
Iterator to first element.
Definition HashTable.h:557
size_type bucket_count() const
Number of buckets in the table.
Definition HashTable.h:581
size_type erase(const Key &inKey)
Erase an element by key.
Definition HashTable.h:729
HashTable & operator=(const HashTable &inRHS)
Assignment operator.
Definition HashTable.h:444
Definition Array.h:590
Fallback hash function that calls T::GetHash()
Definition HashCombine.h:59