18void Vec3::CheckW()
const
20#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
28#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
29 #if defined(JPH_USE_SSE)
30 return _mm_shuffle_ps(inValue, inValue, _MM_SHUFFLE(2, 2, 1, 0));
31 #elif defined(JPH_USE_NEON)
32 return JPH_NEON_SHUFFLE_F32x4(inValue, inValue, 0, 1, 2, 2);
35 value.mData[0] = inValue.mData[0];
36 value.mData[1] = inValue.mData[1];
37 value.mData[2] = inValue.mData[2];
38 value.mData[3] = inValue.mData[2];
47 mValue(sFixW(inRHS.mValue))
53#if defined(JPH_USE_SSE)
54 Type x = _mm_load_ss(&inV.
x);
55 Type y = _mm_load_ss(&inV.
y);
56 Type z = _mm_load_ss(&inV.
z);
57 Type xy = _mm_unpacklo_ps(x, y);
58 mValue = _mm_shuffle_ps(xy, z, _MM_SHUFFLE(0, 0, 1, 0));
59#elif defined(JPH_USE_NEON)
60 float32x2_t xy = vld1_f32(&inV.
x);
61 float32x2_t zz = vdup_n_f32(inV.
z);
62 mValue = vcombine_f32(xy, zz);
67 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
75#if defined(JPH_USE_SSE)
76 mValue = _mm_set_ps(inZ, inZ, inY, inX);
77#elif defined(JPH_USE_NEON)
78 uint32x2_t xy = vcreate_u32(
static_cast<uint64>(BitCast<uint32>(inX)) | (
static_cast<uint64>(BitCast<uint32>(inY)) << 32));
79 uint32x2_t zz = vreinterpret_u32_f32(vdup_n_f32(inZ));
80 mValue = vreinterpretq_f32_u32(vcombine_u32(xy, zz));
85 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
91template<u
int32 SwizzleX, u
int32 SwizzleY, u
int32 SwizzleZ>
94 static_assert(SwizzleX <= 3,
"SwizzleX template parameter out of range");
95 static_assert(SwizzleY <= 3,
"SwizzleY template parameter out of range");
96 static_assert(SwizzleZ <= 3,
"SwizzleZ template parameter out of range");
98#if defined(JPH_USE_SSE)
99 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(SwizzleZ, SwizzleZ, SwizzleY, SwizzleX));
100#elif defined(JPH_USE_NEON)
101 return JPH_NEON_SHUFFLE_F32x4(
mValue,
mValue, SwizzleX, SwizzleY, SwizzleZ, SwizzleZ);
109#if defined(JPH_USE_SSE)
110 return _mm_setzero_ps();
111#elif defined(JPH_USE_NEON)
112 return vdupq_n_f32(0);
114 return Vec3(0, 0, 0);
120#if defined(JPH_USE_SSE)
121 return _mm_set1_ps(inV);
122#elif defined(JPH_USE_NEON)
123 return vdupq_n_f32(inV);
125 return Vec3(inV, inV, inV);
131 return sReplicate(numeric_limits<float>::quiet_NaN());
136#if defined(JPH_USE_SSE)
137 Type v = _mm_loadu_ps(&inV.
x);
138#elif defined(JPH_USE_NEON)
139 Type v = vld1q_f32(&inV.
x);
141 Type v = { inV.
x, inV.
y, inV.
z };
148#if defined(JPH_USE_SSE)
150#elif defined(JPH_USE_NEON)
161#if defined(JPH_USE_SSE)
163#elif defined(JPH_USE_NEON)
174 return sMax(
sMin(inV, inMax), inMin);
179#if defined(JPH_USE_SSE)
180 return _mm_castps_si128(_mm_cmpeq_ps(inV1.
mValue, inV2.
mValue));
181#elif defined(JPH_USE_NEON)
186 inV1.
mF32[1] == inV2.
mF32[1]? 0xffffffffu : 0,
194#if defined(JPH_USE_SSE)
195 return _mm_castps_si128(_mm_cmplt_ps(inV1.
mValue, inV2.
mValue));
196#elif defined(JPH_USE_NEON)
201 inV1.
mF32[1] < inV2.
mF32[1]? 0xffffffffu : 0,
209#if defined(JPH_USE_SSE)
210 return _mm_castps_si128(_mm_cmple_ps(inV1.
mValue, inV2.
mValue));
211#elif defined(JPH_USE_NEON)
216 inV1.
mF32[1] <= inV2.
mF32[1]? 0xffffffffu : 0,
224#if defined(JPH_USE_SSE)
225 return _mm_castps_si128(_mm_cmpgt_ps(inV1.
mValue, inV2.
mValue));
226#elif defined(JPH_USE_NEON)
231 inV1.
mF32[1] > inV2.
mF32[1]? 0xffffffffu : 0,
239#if defined(JPH_USE_SSE)
240 return _mm_castps_si128(_mm_cmpge_ps(inV1.
mValue, inV2.
mValue));
241#elif defined(JPH_USE_NEON)
246 inV1.
mF32[1] >= inV2.
mF32[1]? 0xffffffffu : 0,
254#if defined(JPH_USE_SSE)
260#elif defined(JPH_USE_NEON)
271#if defined(JPH_USE_SSE4_1) && !defined(JPH_PLATFORM_WASM)
274#elif defined(JPH_USE_SSE)
275 __m128 is_set = _mm_castsi128_ps(_mm_srai_epi32(inControl.
mValue, 31));
276 Type v = _mm_or_ps(_mm_and_ps(is_set, inSet.
mValue), _mm_andnot_ps(is_set, inNotSet.
mValue));
278#elif defined(JPH_USE_NEON)
279 Type v = vbslq_f32(vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_u32(inControl.
mValue), 31)), inSet.
mValue, inNotSet.
mValue);
283 for (
int i = 0; i < 3; i++)
284 result.
mF32[i] = (inControl.
mU32[i] & 0x80000000u) ? inSet.
mF32[i] : inNotSet.
mF32[i];
285#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
294#if defined(JPH_USE_SSE)
296#elif defined(JPH_USE_NEON)
297 return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(inV1.
mValue), vreinterpretq_u32_f32(inV2.
mValue)));
305#if defined(JPH_USE_SSE)
307#elif defined(JPH_USE_NEON)
308 return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(inV1.
mValue), vreinterpretq_u32_f32(inV2.
mValue)));
316#if defined(JPH_USE_SSE)
318#elif defined(JPH_USE_NEON)
319 return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(inV1.
mValue), vreinterpretq_u32_f32(inV2.
mValue)));
332template <
class Random>
335 std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
336 float theta = JPH_PI * zero_to_one(inRandom);
337 float phi = 2.0f * JPH_PI * zero_to_one(inRandom);
348 return (inV2 - *
this).LengthSq() <= inMaxDistSq;
358#if defined(JPH_USE_SSE)
360#elif defined(JPH_USE_NEON)
369#if defined(JPH_USE_SSE)
370 return _mm_mul_ps(
mValue, _mm_set1_ps(inV2));
371#elif defined(JPH_USE_NEON)
372 return vmulq_n_f32(
mValue, inV2);
380#if defined(JPH_USE_SSE)
381 return _mm_mul_ps(_mm_set1_ps(inV1), inV2.
mValue);
382#elif defined(JPH_USE_NEON)
383 return vmulq_n_f32(inV2.
mValue, inV1);
391#if defined(JPH_USE_SSE)
392 return _mm_div_ps(
mValue, _mm_set1_ps(inV2));
393#elif defined(JPH_USE_NEON)
394 return vdivq_f32(
mValue, vdupq_n_f32(inV2));
402#if defined(JPH_USE_SSE)
404#elif defined(JPH_USE_NEON)
407 for (
int i = 0; i < 3; ++i)
409 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
418#if defined(JPH_USE_SSE)
420#elif defined(JPH_USE_NEON)
423 for (
int i = 0; i < 3; ++i)
425 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
434#if defined(JPH_USE_SSE)
436#elif defined(JPH_USE_NEON)
439 for (
int i = 0; i < 3; ++i)
441 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
450#if defined(JPH_USE_SSE)
452#elif defined(JPH_USE_NEON)
461#if defined(JPH_USE_SSE)
463#elif defined(JPH_USE_NEON)
466 for (
int i = 0; i < 3; ++i)
468 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
477#if defined(JPH_USE_SSE)
478 return _mm_sub_ps(_mm_setzero_ps(),
mValue);
479#elif defined(JPH_USE_NEON)
480 #ifdef JPH_CROSS_PLATFORM_DETERMINISTIC
481 return vsubq_f32(vdupq_n_f32(0),
mValue);
486 #ifdef JPH_CROSS_PLATFORM_DETERMINISTIC
496#if defined(JPH_USE_SSE)
498#elif defined(JPH_USE_NEON)
507#if defined(JPH_USE_SSE)
509#elif defined(JPH_USE_NEON)
512 for (
int i = 0; i < 3; ++i)
514 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
524#if defined(JPH_USE_SSE)
526#elif defined(JPH_USE_NEON)
535#if defined(JPH_USE_SSE)
536 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(0, 0, 0, 0));
537#elif defined(JPH_USE_NEON)
538 return vdupq_laneq_f32(
mValue, 0);
546#if defined(JPH_USE_SSE)
547 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(1, 1, 1, 1));
548#elif defined(JPH_USE_NEON)
549 return vdupq_laneq_f32(
mValue, 1);
557#if defined(JPH_USE_SSE)
558 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(2, 2, 2, 2));
559#elif defined(JPH_USE_NEON)
560 return vdupq_laneq_f32(
mValue, 2);
578#if defined(JPH_USE_AVX512)
580#elif defined(JPH_USE_SSE)
581 return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(),
mValue),
mValue);
582#elif defined(JPH_USE_NEON)
596#if defined(JPH_USE_SSE)
597 Type t1 = _mm_shuffle_ps(inV2.
mValue, inV2.
mValue, _MM_SHUFFLE(0, 0, 2, 1));
598 t1 = _mm_mul_ps(t1,
mValue);
600 t2 = _mm_mul_ps(t2, inV2.
mValue);
601 Type t3 = _mm_sub_ps(t1, t2);
602 return _mm_shuffle_ps(t3, t3, _MM_SHUFFLE(0, 0, 2, 1));
603#elif defined(JPH_USE_NEON)
605 t1 = vmulq_f32(t1,
mValue);
607 t2 = vmulq_f32(t2, inV2.
mValue);
608 Type t3 = vsubq_f32(t1, t2);
609 return JPH_NEON_SHUFFLE_F32x4(t3, t3, 1, 2, 0, 0);
619#if defined(JPH_USE_SSE4_1)
621#elif defined(JPH_USE_NEON)
623 mul = vsetq_lane_f32(0, mul, 3);
624 return vdupq_n_f32(vaddvq_f32(mul));
627 for (
int i = 0; i < 3; i++)
635#if defined(JPH_USE_SSE4_1)
637#elif defined(JPH_USE_NEON)
639 mul = vsetq_lane_f32(0, mul, 3);
640 return vdupq_n_f32(vaddvq_f32(mul));
643 for (
int i = 0; i < 3; i++)
651#if defined(JPH_USE_SSE4_1)
652 return _mm_cvtss_f32(_mm_dp_ps(
mValue, inV2.
mValue, 0x7f));
653#elif defined(JPH_USE_NEON)
655 mul = vsetq_lane_f32(0, mul, 3);
656 return vaddvq_f32(mul);
659 for (
int i = 0; i < 3; i++)
667#if defined(JPH_USE_SSE4_1)
669#elif defined(JPH_USE_NEON)
671 mul = vsetq_lane_f32(0, mul, 3);
672 return vaddvq_f32(mul);
675 for (
int i = 0; i < 3; i++)
683#if defined(JPH_USE_SSE4_1)
684 return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(
mValue,
mValue, 0x7f)));
685#elif defined(JPH_USE_NEON)
687 mul = vsetq_lane_f32(0, mul, 3);
688 float32x2_t sum = vdup_n_f32(vaddvq_f32(mul));
689 return vget_lane_f32(vsqrt_f32(sum), 0);
697#if defined(JPH_USE_SSE)
698 return _mm_sqrt_ps(
mValue);
699#elif defined(JPH_USE_NEON)
700 return vsqrtq_f32(
mValue);
708#if defined(JPH_USE_SSE4_1)
710#elif defined(JPH_USE_NEON)
712 mul = vsetq_lane_f32(0, mul, 3);
713 float32x4_t sum = vdupq_n_f32(vaddvq_f32(mul));
714 return vdivq_f32(
mValue, vsqrtq_f32(sum));
722#if defined(JPH_USE_SSE4_1) && !defined(JPH_PLATFORM_WASM)
727 Type is_zero = _mm_cmple_ps(len_sq, _mm_set1_ps(FLT_MIN));
728#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
729 if (_mm_movemask_ps(is_zero) == 0xf)
732 return _mm_div_ps(
mValue, _mm_sqrt_ps(len_sq));
734 return _mm_blendv_ps(_mm_div_ps(
mValue, _mm_sqrt_ps(len_sq)), inZeroValue.
mValue, is_zero);
736#elif defined(JPH_USE_NEON)
738 mul = vsetq_lane_f32(0, mul, 3);
739 float32x4_t len_sq = vdupq_n_f32(vaddvq_f32(mul));
740 uint32x4_t is_zero = vcleq_f32(len_sq, vdupq_n_f32(FLT_MIN));
741 return vbslq_f32(is_zero, inZeroValue.
mValue, vdivq_f32(
mValue, vsqrtq_f32(len_sq)));
744 if (len_sq <= FLT_MIN)
747 return *
this / sqrt(len_sq);
753 return abs(
LengthSq() - 1.0f) <= inTolerance;
758#if defined(JPH_USE_AVX512)
759 return (_mm_fpclass_ps_mask(
mValue, 0b10000001) & 0x7) != 0;
760#elif defined(JPH_USE_SSE)
761 return (_mm_movemask_ps(_mm_cmpunord_ps(
mValue,
mValue)) & 0x7) != 0;
762#elif defined(JPH_USE_NEON)
763 uint32x4_t mask = JPH_NEON_UINT32x4(1, 1, 1, 0);
765 return vaddvq_u32(vandq_u32(is_equal, mask)) != 3;
767 return isnan(
mF32[0]) || isnan(
mF32[1]) || isnan(
mF32[2]);
773#if defined(JPH_USE_SSE)
774 _mm_store_ss(&outV->
x,
mValue);
775 Vec3 t = Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_UNUSED>();
776 _mm_store_ss(&outV->
y, t.
mValue);
778 _mm_store_ss(&outV->
z, t.
mValue);
779#elif defined(JPH_USE_NEON)
780 float32x2_t xy = vget_low_f32(
mValue);
781 vst1_f32(&outV->
x, xy);
782 vst1q_lane_f32(&outV->
z,
mValue, 2);
792#if defined(JPH_USE_SSE)
793 return _mm_cvttps_epi32(
mValue);
794#elif defined(JPH_USE_NEON)
795 return vcvtq_u32_f32(
mValue);
803#if defined(JPH_USE_SSE)
805#elif defined(JPH_USE_NEON)
806 return vreinterpretq_u32_f32(
mValue);
808 return *
reinterpret_cast<const UVec4 *
>(
this);
814 Vec3 v =
sMin(
mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
821 Vec3 v =
sMax(
mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
842#if defined(JPH_USE_AVX512)
843 return _mm_fixupimm_ps(
mValue,
mValue, _mm_set1_epi32(0xA9A90A00), 0);
844#elif defined(JPH_USE_SSE)
845 Type minus_one = _mm_set1_ps(-1.0f);
846 Type one = _mm_set1_ps(1.0f);
847 return _mm_or_ps(_mm_and_ps(
mValue, minus_one), one);
848#elif defined(JPH_USE_NEON)
849 Type minus_one = vdupq_n_f32(-1.0f);
850 Type one = vdupq_n_f32(1.0f);
851 return vreinterpretq_f32_u32(vorrq_u32(vandq_u32(vreinterpretq_u32_f32(
mValue), vreinterpretq_u32_f32(minus_one)), vreinterpretq_u32_f32(one)));
853 return Vec3(std::signbit(
mF32[0])? -1.0f : 1.0f,
854 std::signbit(
mF32[1])? -1.0f : 1.0f,
855 std::signbit(
mF32[2])? -1.0f : 1.0f);
#define JPH_SUPPRESS_WARNINGS_STD_BEGIN
Definition Core.h:384
#define JPH_SUPPRESS_WARNINGS_STD_END
Definition Core.h:396
std::uint64_t uint64
Definition Core.h:457
#define JPH_NAMESPACE_END
Definition Core.h:379
std::uint32_t uint32
Definition Core.h:456
#define JPH_NAMESPACE_BEGIN
Definition Core.h:373
#define JPH_MAKE_HASHABLE(type,...)
Definition HashCombine.h:191
#define JPH_ASSERT(...)
Definition IssueReporting.h:33
@ SWIZZLE_Z
Use the Z component.
Definition Swizzle.h:14
@ SWIZZLE_UNUSED
We always use the Z component when we don't specifically want to initialize a value,...
Definition Swizzle.h:16
@ SWIZZLE_Y
Use the Y component.
Definition Swizzle.h:13
Vec3 operator*(float inV1, Vec3Arg inV2)
Definition Vec3.inl:378
Class that holds 3 floats. Used as a storage class. Convert to Vec3 for calculations.
Definition Float3.h:13
float y
Definition Float3.h:39
float z
Definition Float3.h:40
float x
Definition Float3.h:38
static JPH_INLINE UVec4 sAnd(UVec4Arg inV1, UVec4Arg inV2)
Logical and (component wise)
Definition UVec4.inl:202
static JPH_INLINE UVec4 sOr(UVec4Arg inV1, UVec4Arg inV2)
Logical or (component wise)
Definition UVec4.inl:174
JPH_INLINE bool TestAllXYZTrue() const
Test if X, Y and Z components are true (true is when highest bit of component is set)
Definition UVec4.inl:413
Type mValue
Definition UVec4.h:211
static JPH_INLINE UVec4 sXor(UVec4Arg inV1, UVec4Arg inV2)
Logical xor (component wise)
Definition UVec4.inl:188
JPH_INLINE Vec4 ReinterpretAsFloat() const
Reinterpret UVec4 as a Vec4 (doesn't change the bits)
Definition UVec4.inl:340
uint32 mU32[4]
Definition UVec4.h:212
JPH_INLINE bool IsClose(Vec3Arg inV2, float inMaxDistSq=1.0e-12f) const
Test if two vectors are close.
Definition Vec3.inl:346
static JPH_INLINE Vec3 sMax(Vec3Arg inV1, Vec3Arg inV2)
Return the maximum of each of the components.
Definition Vec3.inl:159
JPH_INLINE float Dot(Vec3Arg inV2) const
Dot product.
Definition Vec3.inl:649
JPH_INLINE Vec3 Normalized() const
Normalize vector.
Definition Vec3.inl:706
static JPH_INLINE Type sFixW(Type inValue)
Internal helper function that ensures that the Z component is replicated to the W component to preven...
Vec4::Type Type
Definition Vec3.h:27
JPH_INLINE bool operator==(Vec3Arg inV2) const
Comparison.
Definition Vec3.inl:341
JPH_INLINE Vec4 SplatX() const
Replicate the X component to all components.
Definition Vec3.inl:533
static JPH_INLINE Vec3 sMin(Vec3Arg inV1, Vec3Arg inV2)
Return the minimum value of each of the components.
Definition Vec3.inl:146
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const
Cross product.
Definition Vec3.inl:594
JPH_INLINE Vec3 GetNormalizedPerpendicular() const
Get normalized vector that is perpendicular to this vector.
Definition Vec3.inl:826
static Vec3 sRandom(Random &inRandom)
Get random unit vector.
Definition Vec3.inl:333
JPH_INLINE float GetX() const
Get individual components.
Definition Vec3.h:124
JPH_INLINE bool IsNormalized(float inTolerance=1.0e-6f) const
Test if vector is normalized.
Definition Vec3.inl:751
static JPH_INLINE Vec3 sXor(Vec3Arg inV1, Vec3Arg inV2)
Logical xor (component wise)
Definition Vec3.inl:303
JPH_INLINE float Length() const
Length of vector.
Definition Vec3.inl:681
static JPH_INLINE UVec4 sGreaterOrEqual(Vec3Arg inV1, Vec3Arg inV2)
Greater than or equal (component wise)
Definition Vec3.inl:237
JPH_INLINE float ReduceMin() const
Get the minimum of X, Y and Z.
Definition Vec3.inl:812
JPH_INLINE Vec3 & operator-=(Vec3Arg inV2)
Subtract two float vectors (component wise)
Definition Vec3.inl:505
JPH_INLINE float ReduceMax() const
Get the maximum of X, Y and Z.
Definition Vec3.inl:819
static JPH_INLINE UVec4 sLessOrEqual(Vec3Arg inV1, Vec3Arg inV2)
Less than or equal (component wise)
Definition Vec3.inl:207
JPH_INLINE Vec3 operator/(float inV2) const
Divide vector by float.
Definition Vec3.inl:389
friend JPH_INLINE Vec3 operator*(float inV1, Vec3Arg inV2)
Multiply vector with float.
Definition Vec3.inl:378
JPH_INLINE int GetLowestComponentIndex() const
Get index of component with lowest value.
Definition Vec3.inl:566
JPH_INLINE Vec3 & operator/=(float inV2)
Divide vector by float.
Definition Vec3.inl:432
JPH_INLINE Vec4 DotV4(Vec3Arg inV2) const
Dot product, returns the dot product in X, Y, Z and W components.
Definition Vec3.inl:633
JPH_INLINE Vec3 Abs() const
Return the absolute value of each of the components.
Definition Vec3.inl:576
JPH_INLINE Vec3 Reciprocal() const
Reciprocal vector (1 / value) for each of the components.
Definition Vec3.inl:589
JPH_INLINE Vec3 NormalizedOr(Vec3Arg inZeroValue) const
Normalize vector or return inZeroValue if the length of the vector is zero.
Definition Vec3.inl:720
JPH_INLINE Vec3 operator+(Vec3Arg inV2) const
Add two float vectors (component wise)
Definition Vec3.inl:448
JPH_INLINE Vec4 SplatZ() const
Replicate the Z component to all components.
Definition Vec3.inl:555
static JPH_INLINE Vec3 sOr(Vec3Arg inV1, Vec3Arg inV2)
Logical or (component wise)
Definition Vec3.inl:292
static JPH_INLINE UVec4 sGreater(Vec3Arg inV1, Vec3Arg inV2)
Greater than (component wise)
Definition Vec3.inl:222
static JPH_INLINE Vec3 sAnd(Vec3Arg inV1, Vec3Arg inV2)
Logical and (component wise)
Definition Vec3.inl:314
JPH_INLINE void CheckW() const
Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate...
static JPH_INLINE Vec3 sUnitSpherical(float inTheta, float inPhi)
Definition Vec3.inl:325
JPH_INLINE UVec4 ToInt() const
Convert each component from a float to an int.
Definition Vec3.inl:790
Type mValue
Definition Vec3.h:286
JPH_INLINE float GetY() const
Definition Vec3.h:125
JPH_INLINE Vec4 SplatY() const
Replicate the Y component to all components.
Definition Vec3.inl:544
JPH_INLINE Vec3 operator-() const
Negate.
Definition Vec3.inl:475
JPH_INLINE void StoreFloat3(Float3 *outV) const
Store 3 floats to memory.
Definition Vec3.inl:771
JPH_INLINE float LengthSq() const
Squared length of vector.
Definition Vec3.inl:665
float mF32[4]
Definition Vec3.h:287
static JPH_INLINE UVec4 sEquals(Vec3Arg inV1, Vec3Arg inV2)
Equals (component wise)
Definition Vec3.inl:177
JPH_INLINE bool IsNearZero(float inMaxDistSq=1.0e-12f) const
Test if vector is near zero.
Definition Vec3.inl:351
static JPH_INLINE Vec3 sZero()
Vector with all zeros.
Definition Vec3.inl:107
static JPH_INLINE UVec4 sLess(Vec3Arg inV1, Vec3Arg inV2)
Less than (component wise)
Definition Vec3.inl:192
static JPH_INLINE Vec3 sReplicate(float inV)
Replicate inV across all components.
Definition Vec3.inl:118
static JPH_INLINE Vec3 sClamp(Vec3Arg inV, Vec3Arg inMin, Vec3Arg inMax)
Clamp a vector between min and max (component wise)
Definition Vec3.inl:172
JPH_INLINE Vec3 & operator*=(float inV2)
Multiply vector with float.
Definition Vec3.inl:400
JPH_INLINE Vec3 & operator+=(Vec3Arg inV2)
Add two float vectors (component wise)
Definition Vec3.inl:459
static JPH_INLINE Vec3 sSelect(Vec3Arg inNotSet, Vec3Arg inSet, UVec4Arg inControl)
Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit ...
Definition Vec3.inl:269
JPH_INLINE bool IsNaN() const
Test if vector contains NaN elements.
Definition Vec3.inl:756
JPH_INLINE Vec3 Sqrt() const
Component wise square root.
Definition Vec3.inl:695
JPH_INLINE UVec4 ReinterpretAsInt() const
Reinterpret Vec3 as a UVec4 (doesn't change the bits)
Definition Vec3.inl:801
JPH_INLINE Vec3 DotV(Vec3Arg inV2) const
Dot product, returns the dot product in X, Y and Z components.
Definition Vec3.inl:617
static JPH_INLINE Vec3 sLoadFloat3Unsafe(const Float3 &inV)
Load 3 floats from memory (reads 32 bits extra which it doesn't use)
Definition Vec3.inl:134
JPH_INLINE float GetZ() const
Definition Vec3.h:126
JPH_INLINE Vec3 GetSign() const
Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative)
Definition Vec3.inl:840
static JPH_INLINE Vec3 sNaN()
Vector with all NaN's.
Definition Vec3.inl:129
Vec3()=default
Constructor.
JPH_INLINE int GetHighestComponentIndex() const
Get index of component with highest value.
Definition Vec3.inl:571
static JPH_INLINE Vec3 sFusedMultiplyAdd(Vec3Arg inMul1, Vec3Arg inMul2, Vec3Arg inAdd)
Calculates inMul1 * inMul2 + inAdd.
Definition Vec3.inl:252
JPH_INLINE Vec3 Swizzle() const
Swizzle the elements in inV.
JPH_INLINE float GetX() const
Get individual components.
Definition Vec4.h:113
JPH_INLINE float GetY() const
Definition Vec4.h:114
static JPH_INLINE Vec4 sReplicate(float inV)
Replicate inV across all components.
Definition Vec4.inl:74
void SinCos(Vec4 &outSin, Vec4 &outCos) const
Calculate the sine and cosine for each element of this vector (input in radians)
Definition Vec4.inl:778