18void Vec3::CheckW()
const
20#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
28#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
29 #if defined(JPH_USE_SSE)
30 return _mm_shuffle_ps(inValue, inValue, _MM_SHUFFLE(2, 2, 1, 0));
31 #elif defined(JPH_USE_NEON)
32 return JPH_NEON_SHUFFLE_F32x4(inValue, inValue, 0, 1, 2, 2);
35 value.mData[0] = inValue.mData[0];
36 value.mData[1] = inValue.mData[1];
37 value.mData[2] = inValue.mData[2];
38 value.mData[3] = inValue.mData[2];
47 mValue(sFixW(inRHS.mValue))
53#if defined(JPH_USE_SSE)
54 Type x = _mm_load_ss(&inV.
x);
55 Type y = _mm_load_ss(&inV.
y);
56 Type z = _mm_load_ss(&inV.
z);
57 Type xy = _mm_unpacklo_ps(x, y);
58 mValue = _mm_shuffle_ps(xy, z, _MM_SHUFFLE(0, 0, 1, 0));
59#elif defined(JPH_USE_NEON)
60 float32x2_t xy = vld1_f32(&inV.
x);
61 float32x2_t zz = vdup_n_f32(inV.
z);
62 mValue = vcombine_f32(xy, zz);
73#if defined(JPH_USE_SSE)
74 mValue = _mm_set_ps(inZ, inZ, inY, inX);
75#elif defined(JPH_USE_NEON)
76 uint32x2_t xy = vcreate_u32(
static_cast<uint64>(BitCast<uint32>(inX)) | (
static_cast<uint64>(BitCast<uint32>(inY)) << 32));
77 uint32x2_t zz = vreinterpret_u32_f32(vdup_n_f32(inZ));
78 mValue = vreinterpretq_f32_u32(vcombine_u32(xy, zz));
87template<u
int32 SwizzleX, u
int32 SwizzleY, u
int32 SwizzleZ>
90 static_assert(SwizzleX <= 3,
"SwizzleX template parameter out of range");
91 static_assert(SwizzleY <= 3,
"SwizzleY template parameter out of range");
92 static_assert(SwizzleZ <= 3,
"SwizzleZ template parameter out of range");
94#if defined(JPH_USE_SSE)
95 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(SwizzleZ, SwizzleZ, SwizzleY, SwizzleX));
96#elif defined(JPH_USE_NEON)
97 return JPH_NEON_SHUFFLE_F32x4(
mValue,
mValue, SwizzleX, SwizzleY, SwizzleZ, SwizzleZ);
105#if defined(JPH_USE_SSE)
106 return _mm_setzero_ps();
107#elif defined(JPH_USE_NEON)
108 return vdupq_n_f32(0);
110 return Vec3(0, 0, 0);
116#if defined(JPH_USE_SSE)
117 return _mm_set1_ps(inV);
118#elif defined(JPH_USE_NEON)
119 return vdupq_n_f32(inV);
121 return Vec3(inV, inV, inV);
132 return sReplicate(numeric_limits<float>::quiet_NaN());
137#if defined(JPH_USE_SSE)
138 Type v = _mm_loadu_ps(&inV.
x);
139#elif defined(JPH_USE_NEON)
140 Type v = vld1q_f32(&inV.
x);
142 Type v = { inV.
x, inV.
y, inV.
z };
149#if defined(JPH_USE_SSE)
151#elif defined(JPH_USE_NEON)
162#if defined(JPH_USE_SSE)
164#elif defined(JPH_USE_NEON)
175 return sMax(
sMin(inV, inMax), inMin);
180#if defined(JPH_USE_SSE)
181 return _mm_castps_si128(_mm_cmpeq_ps(inV1.
mValue, inV2.
mValue));
182#elif defined(JPH_USE_NEON)
187 inV1.
mF32[1] == inV2.
mF32[1]? 0xffffffffu : 0,
195#if defined(JPH_USE_SSE)
196 return _mm_castps_si128(_mm_cmplt_ps(inV1.
mValue, inV2.
mValue));
197#elif defined(JPH_USE_NEON)
202 inV1.
mF32[1] < inV2.
mF32[1]? 0xffffffffu : 0,
210#if defined(JPH_USE_SSE)
211 return _mm_castps_si128(_mm_cmple_ps(inV1.
mValue, inV2.
mValue));
212#elif defined(JPH_USE_NEON)
217 inV1.
mF32[1] <= inV2.
mF32[1]? 0xffffffffu : 0,
225#if defined(JPH_USE_SSE)
226 return _mm_castps_si128(_mm_cmpgt_ps(inV1.
mValue, inV2.
mValue));
227#elif defined(JPH_USE_NEON)
232 inV1.
mF32[1] > inV2.
mF32[1]? 0xffffffffu : 0,
240#if defined(JPH_USE_SSE)
241 return _mm_castps_si128(_mm_cmpge_ps(inV1.
mValue, inV2.
mValue));
242#elif defined(JPH_USE_NEON)
247 inV1.
mF32[1] >= inV2.
mF32[1]? 0xffffffffu : 0,
255#if defined(JPH_USE_SSE)
261#elif defined(JPH_USE_NEON)
272#if defined(JPH_USE_SSE4_1) && !defined(JPH_PLATFORM_WASM)
275#elif defined(JPH_USE_SSE)
276 __m128 is_set = _mm_castsi128_ps(_mm_srai_epi32(inControl.
mValue, 31));
277 Type v = _mm_or_ps(_mm_and_ps(is_set, inSet.
mValue), _mm_andnot_ps(is_set, inNotSet.
mValue));
279#elif defined(JPH_USE_NEON)
280 Type v = vbslq_f32(vreinterpretq_u32_s32(vshrq_n_s32(vreinterpretq_s32_u32(inControl.
mValue), 31)), inSet.
mValue, inNotSet.
mValue);
284 for (
int i = 0; i < 3; i++)
285 result.
mF32[i] = (inControl.
mU32[i] & 0x80000000u) ? inSet.
mF32[i] : inNotSet.
mF32[i];
286#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
295#if defined(JPH_USE_SSE)
297#elif defined(JPH_USE_NEON)
298 return vreinterpretq_f32_u32(vorrq_u32(vreinterpretq_u32_f32(inV1.
mValue), vreinterpretq_u32_f32(inV2.
mValue)));
306#if defined(JPH_USE_SSE)
308#elif defined(JPH_USE_NEON)
309 return vreinterpretq_f32_u32(veorq_u32(vreinterpretq_u32_f32(inV1.
mValue), vreinterpretq_u32_f32(inV2.
mValue)));
317#if defined(JPH_USE_SSE)
319#elif defined(JPH_USE_NEON)
320 return vreinterpretq_f32_u32(vandq_u32(vreinterpretq_u32_f32(inV1.
mValue), vreinterpretq_u32_f32(inV2.
mValue)));
333template <
class Random>
336 std::uniform_real_distribution<float> zero_to_one(0.0f, 1.0f);
337 float theta = JPH_PI * zero_to_one(inRandom);
338 float phi = 2.0f * JPH_PI * zero_to_one(inRandom);
349 return (inV2 - *
this).LengthSq() <= inMaxDistSq;
359#if defined(JPH_USE_SSE)
361#elif defined(JPH_USE_NEON)
370#if defined(JPH_USE_SSE)
371 return _mm_mul_ps(
mValue, _mm_set1_ps(inV2));
372#elif defined(JPH_USE_NEON)
373 return vmulq_n_f32(
mValue, inV2);
381#if defined(JPH_USE_SSE)
382 return _mm_mul_ps(_mm_set1_ps(inV1), inV2.
mValue);
383#elif defined(JPH_USE_NEON)
384 return vmulq_n_f32(inV2.
mValue, inV1);
392#if defined(JPH_USE_SSE)
393 return _mm_div_ps(
mValue, _mm_set1_ps(inV2));
394#elif defined(JPH_USE_NEON)
395 return vdivq_f32(
mValue, vdupq_n_f32(inV2));
403#if defined(JPH_USE_SSE)
405#elif defined(JPH_USE_NEON)
408 for (
int i = 0; i < 3; ++i)
410 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
419#if defined(JPH_USE_SSE)
421#elif defined(JPH_USE_NEON)
424 for (
int i = 0; i < 3; ++i)
426 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
435#if defined(JPH_USE_SSE)
437#elif defined(JPH_USE_NEON)
440 for (
int i = 0; i < 3; ++i)
442 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
451#if defined(JPH_USE_SSE)
453#elif defined(JPH_USE_NEON)
462#if defined(JPH_USE_SSE)
464#elif defined(JPH_USE_NEON)
467 for (
int i = 0; i < 3; ++i)
469 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
478#if defined(JPH_USE_SSE)
479 return _mm_sub_ps(_mm_setzero_ps(),
mValue);
480#elif defined(JPH_USE_NEON)
481 #ifdef JPH_CROSS_PLATFORM_DETERMINISTIC
482 return vsubq_f32(vdupq_n_f32(0),
mValue);
487 #ifdef JPH_CROSS_PLATFORM_DETERMINISTIC
497#if defined(JPH_USE_SSE)
499#elif defined(JPH_USE_NEON)
508#if defined(JPH_USE_SSE)
510#elif defined(JPH_USE_NEON)
513 for (
int i = 0; i < 3; ++i)
515 #ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
525#if defined(JPH_USE_SSE)
527#elif defined(JPH_USE_NEON)
536#if defined(JPH_USE_SSE)
537 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(0, 0, 0, 0));
538#elif defined(JPH_USE_NEON)
539 return vdupq_laneq_f32(
mValue, 0);
547#if defined(JPH_USE_SSE)
548 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(1, 1, 1, 1));
549#elif defined(JPH_USE_NEON)
550 return vdupq_laneq_f32(
mValue, 1);
558#if defined(JPH_USE_SSE)
559 return _mm_shuffle_ps(
mValue,
mValue, _MM_SHUFFLE(2, 2, 2, 2));
560#elif defined(JPH_USE_NEON)
561 return vdupq_laneq_f32(
mValue, 2);
579#if defined(JPH_USE_AVX512)
581#elif defined(JPH_USE_SSE)
582 return _mm_max_ps(_mm_sub_ps(_mm_setzero_ps(),
mValue),
mValue);
583#elif defined(JPH_USE_NEON)
597#if defined(JPH_USE_SSE)
598 Type t1 = _mm_shuffle_ps(inV2.
mValue, inV2.
mValue, _MM_SHUFFLE(0, 0, 2, 1));
599 t1 = _mm_mul_ps(t1,
mValue);
601 t2 = _mm_mul_ps(t2, inV2.
mValue);
602 Type t3 = _mm_sub_ps(t1, t2);
603 return _mm_shuffle_ps(t3, t3, _MM_SHUFFLE(0, 0, 2, 1));
604#elif defined(JPH_USE_NEON)
606 t1 = vmulq_f32(t1,
mValue);
608 t2 = vmulq_f32(t2, inV2.
mValue);
609 Type t3 = vsubq_f32(t1, t2);
610 return JPH_NEON_SHUFFLE_F32x4(t3, t3, 1, 2, 0, 0);
620#if defined(JPH_USE_SSE4_1)
622#elif defined(JPH_USE_NEON)
624 mul = vsetq_lane_f32(0, mul, 3);
625 return vdupq_n_f32(vaddvq_f32(mul));
628 for (
int i = 0; i < 3; i++)
636#if defined(JPH_USE_SSE4_1)
638#elif defined(JPH_USE_NEON)
640 mul = vsetq_lane_f32(0, mul, 3);
641 return vdupq_n_f32(vaddvq_f32(mul));
644 for (
int i = 0; i < 3; i++)
652#if defined(JPH_USE_SSE4_1)
653 return _mm_cvtss_f32(_mm_dp_ps(
mValue, inV2.
mValue, 0x7f));
654#elif defined(JPH_USE_NEON)
656 mul = vsetq_lane_f32(0, mul, 3);
657 return vaddvq_f32(mul);
660 for (
int i = 0; i < 3; i++)
668#if defined(JPH_USE_SSE4_1)
670#elif defined(JPH_USE_NEON)
672 mul = vsetq_lane_f32(0, mul, 3);
673 return vaddvq_f32(mul);
676 for (
int i = 0; i < 3; i++)
684#if defined(JPH_USE_SSE4_1)
685 return _mm_cvtss_f32(_mm_sqrt_ss(_mm_dp_ps(
mValue,
mValue, 0x7f)));
686#elif defined(JPH_USE_NEON)
688 mul = vsetq_lane_f32(0, mul, 3);
689 float32x2_t sum = vdup_n_f32(vaddvq_f32(mul));
690 return vget_lane_f32(vsqrt_f32(sum), 0);
698#if defined(JPH_USE_SSE)
699 return _mm_sqrt_ps(
mValue);
700#elif defined(JPH_USE_NEON)
701 return vsqrtq_f32(
mValue);
709#if defined(JPH_USE_SSE4_1)
711#elif defined(JPH_USE_NEON)
713 mul = vsetq_lane_f32(0, mul, 3);
714 float32x4_t sum = vdupq_n_f32(vaddvq_f32(mul));
715 return vdivq_f32(
mValue, vsqrtq_f32(sum));
723#if defined(JPH_USE_SSE4_1) && !defined(JPH_PLATFORM_WASM)
728 Type is_zero = _mm_cmple_ps(len_sq, _mm_set1_ps(FLT_MIN));
729#ifdef JPH_FLOATING_POINT_EXCEPTIONS_ENABLED
730 if (_mm_movemask_ps(is_zero) == 0xf)
733 return _mm_div_ps(
mValue, _mm_sqrt_ps(len_sq));
735 return _mm_blendv_ps(_mm_div_ps(
mValue, _mm_sqrt_ps(len_sq)), inZeroValue.
mValue, is_zero);
737#elif defined(JPH_USE_NEON)
739 mul = vsetq_lane_f32(0, mul, 3);
740 float32x4_t len_sq = vdupq_n_f32(vaddvq_f32(mul));
741 uint32x4_t is_zero = vcleq_f32(len_sq, vdupq_n_f32(FLT_MIN));
742 return vbslq_f32(is_zero, inZeroValue.
mValue, vdivq_f32(
mValue, vsqrtq_f32(len_sq)));
745 if (len_sq <= FLT_MIN)
748 return *
this / sqrt(len_sq);
754 return abs(
LengthSq() - 1.0f) <= inTolerance;
759#if defined(JPH_USE_AVX512)
760 return (_mm_fpclass_ps_mask(
mValue, 0b10000001) & 0x7) != 0;
761#elif defined(JPH_USE_SSE)
762 return (_mm_movemask_ps(_mm_cmpunord_ps(
mValue,
mValue)) & 0x7) != 0;
763#elif defined(JPH_USE_NEON)
764 uint32x4_t mask = JPH_NEON_UINT32x4(1, 1, 1, 0);
766 return vaddvq_u32(vandq_u32(is_equal, mask)) != 3;
768 return isnan(
mF32[0]) || isnan(
mF32[1]) || isnan(
mF32[2]);
774#if defined(JPH_USE_SSE)
775 _mm_store_ss(&outV->
x,
mValue);
776 Vec3 t = Swizzle<SWIZZLE_Y, SWIZZLE_Z, SWIZZLE_UNUSED>();
777 _mm_store_ss(&outV->
y, t.
mValue);
779 _mm_store_ss(&outV->
z, t.
mValue);
780#elif defined(JPH_USE_NEON)
781 float32x2_t xy = vget_low_f32(
mValue);
782 vst1_f32(&outV->
x, xy);
783 vst1q_lane_f32(&outV->
z,
mValue, 2);
793#if defined(JPH_USE_SSE)
794 return _mm_cvttps_epi32(
mValue);
795#elif defined(JPH_USE_NEON)
796 return vcvtq_u32_f32(
mValue);
804#if defined(JPH_USE_SSE)
806#elif defined(JPH_USE_NEON)
807 return vreinterpretq_u32_f32(
mValue);
809 return *
reinterpret_cast<const UVec4 *
>(
this);
815 Vec3 v =
sMin(
mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
822 Vec3 v =
sMax(
mValue, Swizzle<SWIZZLE_Y, SWIZZLE_UNUSED, SWIZZLE_Z>());
843#if defined(JPH_USE_AVX512)
844 return _mm_fixupimm_ps(
mValue,
mValue, _mm_set1_epi32(0xA9A90A00), 0);
845#elif defined(JPH_USE_SSE)
846 Type minus_one = _mm_set1_ps(-1.0f);
847 Type one = _mm_set1_ps(1.0f);
848 return _mm_or_ps(_mm_and_ps(
mValue, minus_one), one);
849#elif defined(JPH_USE_NEON)
850 Type minus_one = vdupq_n_f32(-1.0f);
851 Type one = vdupq_n_f32(1.0f);
852 return vreinterpretq_f32_u32(vorrq_u32(vandq_u32(vreinterpretq_u32_f32(
mValue), vreinterpretq_u32_f32(minus_one)), vreinterpretq_u32_f32(one)));
854 return Vec3(std::signbit(
mF32[0])? -1.0f : 1.0f,
855 std::signbit(
mF32[1])? -1.0f : 1.0f,
856 std::signbit(
mF32[2])? -1.0f : 1.0f);
#define JPH_SUPPRESS_WARNINGS_STD_BEGIN
Definition Core.h:419
#define JPH_SUPPRESS_WARNINGS_STD_END
Definition Core.h:431
std::uint64_t uint64
Definition Core.h:485
#define JPH_NAMESPACE_END
Definition Core.h:414
std::uint32_t uint32
Definition Core.h:484
#define JPH_NAMESPACE_BEGIN
Definition Core.h:408
#define JPH_MAKE_HASHABLE(type,...)
Definition HashCombine.h:223
#define JPH_ASSERT(...)
Definition IssueReporting.h:33
@ SWIZZLE_Z
Use the Z component.
Definition Swizzle.h:14
@ SWIZZLE_UNUSED
We always use the Z component when we don't specifically want to initialize a value,...
Definition Swizzle.h:16
@ SWIZZLE_Y
Use the Y component.
Definition Swizzle.h:13
Vec3 operator*(float inV1, Vec3Arg inV2)
Definition Vec3.inl:379
Class that holds 3 floats. Used as a storage class. Convert to Vec3 for calculations.
Definition Float3.h:13
float y
Definition Float3.h:39
float z
Definition Float3.h:40
float x
Definition Float3.h:38
static JPH_INLINE UVec4 sAnd(UVec4Arg inV1, UVec4Arg inV2)
Logical and (component wise)
Definition UVec4.inl:202
static JPH_INLINE UVec4 sOr(UVec4Arg inV1, UVec4Arg inV2)
Logical or (component wise)
Definition UVec4.inl:174
JPH_INLINE bool TestAllXYZTrue() const
Test if X, Y and Z components are true (true is when highest bit of component is set)
Definition UVec4.inl:413
Type mValue
Definition UVec4.h:211
static JPH_INLINE UVec4 sXor(UVec4Arg inV1, UVec4Arg inV2)
Logical xor (component wise)
Definition UVec4.inl:188
JPH_INLINE Vec4 ReinterpretAsFloat() const
Reinterpret UVec4 as a Vec4 (doesn't change the bits)
Definition UVec4.inl:340
uint32 mU32[4]
Definition UVec4.h:212
JPH_INLINE bool IsClose(Vec3Arg inV2, float inMaxDistSq=1.0e-12f) const
Test if two vectors are close.
Definition Vec3.inl:347
static JPH_INLINE Vec3 sMax(Vec3Arg inV1, Vec3Arg inV2)
Return the maximum of each of the components.
Definition Vec3.inl:160
JPH_INLINE float Dot(Vec3Arg inV2) const
Dot product.
Definition Vec3.inl:650
JPH_INLINE Vec3 Normalized() const
Normalize vector.
Definition Vec3.inl:707
static JPH_INLINE Type sFixW(Type inValue)
Internal helper function that ensures that the Z component is replicated to the W component to preven...
Vec4::Type Type
Definition Vec3.h:27
JPH_INLINE bool operator==(Vec3Arg inV2) const
Comparison.
Definition Vec3.inl:342
JPH_INLINE Vec4 SplatX() const
Replicate the X component to all components.
Definition Vec3.inl:534
static JPH_INLINE Vec3 sMin(Vec3Arg inV1, Vec3Arg inV2)
Return the minimum value of each of the components.
Definition Vec3.inl:147
JPH_INLINE Vec3 Cross(Vec3Arg inV2) const
Cross product.
Definition Vec3.inl:595
JPH_INLINE Vec3 GetNormalizedPerpendicular() const
Get normalized vector that is perpendicular to this vector.
Definition Vec3.inl:827
static Vec3 sRandom(Random &inRandom)
Get random unit vector.
Definition Vec3.inl:334
JPH_INLINE float GetX() const
Get individual components.
Definition Vec3.h:127
JPH_INLINE bool IsNormalized(float inTolerance=1.0e-6f) const
Test if vector is normalized.
Definition Vec3.inl:752
static JPH_INLINE Vec3 sXor(Vec3Arg inV1, Vec3Arg inV2)
Logical xor (component wise)
Definition Vec3.inl:304
JPH_INLINE float Length() const
Length of vector.
Definition Vec3.inl:682
static JPH_INLINE UVec4 sGreaterOrEqual(Vec3Arg inV1, Vec3Arg inV2)
Greater than or equal (component wise)
Definition Vec3.inl:238
JPH_INLINE float ReduceMin() const
Get the minimum of X, Y and Z.
Definition Vec3.inl:813
JPH_INLINE Vec3 & operator-=(Vec3Arg inV2)
Subtract two float vectors (component wise)
Definition Vec3.inl:506
JPH_INLINE float ReduceMax() const
Get the maximum of X, Y and Z.
Definition Vec3.inl:820
static JPH_INLINE UVec4 sLessOrEqual(Vec3Arg inV1, Vec3Arg inV2)
Less than or equal (component wise)
Definition Vec3.inl:208
JPH_INLINE Vec3 operator/(float inV2) const
Divide vector by float.
Definition Vec3.inl:390
friend JPH_INLINE Vec3 operator*(float inV1, Vec3Arg inV2)
Multiply vector with float.
Definition Vec3.inl:379
JPH_INLINE int GetLowestComponentIndex() const
Get index of component with lowest value.
Definition Vec3.inl:567
JPH_INLINE Vec3 & operator/=(float inV2)
Divide vector by float.
Definition Vec3.inl:433
JPH_INLINE Vec4 DotV4(Vec3Arg inV2) const
Dot product, returns the dot product in X, Y, Z and W components.
Definition Vec3.inl:634
JPH_INLINE Vec3 Abs() const
Return the absolute value of each of the components.
Definition Vec3.inl:577
static JPH_INLINE Vec3 sOne()
Vector with all ones.
Definition Vec3.inl:125
JPH_INLINE Vec3 Reciprocal() const
Reciprocal vector (1 / value) for each of the components.
Definition Vec3.inl:590
JPH_INLINE Vec3 NormalizedOr(Vec3Arg inZeroValue) const
Normalize vector or return inZeroValue if the length of the vector is zero.
Definition Vec3.inl:721
JPH_INLINE Vec3 operator+(Vec3Arg inV2) const
Add two float vectors (component wise)
Definition Vec3.inl:449
JPH_INLINE Vec4 SplatZ() const
Replicate the Z component to all components.
Definition Vec3.inl:556
static JPH_INLINE Vec3 sOr(Vec3Arg inV1, Vec3Arg inV2)
Logical or (component wise)
Definition Vec3.inl:293
static JPH_INLINE UVec4 sGreater(Vec3Arg inV1, Vec3Arg inV2)
Greater than (component wise)
Definition Vec3.inl:223
static JPH_INLINE Vec3 sAnd(Vec3Arg inV1, Vec3Arg inV2)
Logical and (component wise)
Definition Vec3.inl:315
JPH_INLINE void CheckW() const
Internal helper function that checks that W is equal to Z, so e.g. dividing by it should not generate...
static JPH_INLINE Vec3 sUnitSpherical(float inTheta, float inPhi)
Definition Vec3.inl:326
JPH_INLINE UVec4 ToInt() const
Convert each component from a float to an int.
Definition Vec3.inl:791
Type mValue
Definition Vec3.h:289
JPH_INLINE float GetY() const
Definition Vec3.h:128
JPH_INLINE Vec4 SplatY() const
Replicate the Y component to all components.
Definition Vec3.inl:545
JPH_INLINE Vec3 operator-() const
Negate.
Definition Vec3.inl:476
JPH_INLINE void StoreFloat3(Float3 *outV) const
Store 3 floats to memory.
Definition Vec3.inl:772
JPH_INLINE float LengthSq() const
Squared length of vector.
Definition Vec3.inl:666
float mF32[4]
Definition Vec3.h:290
static JPH_INLINE UVec4 sEquals(Vec3Arg inV1, Vec3Arg inV2)
Equals (component wise)
Definition Vec3.inl:178
JPH_INLINE bool IsNearZero(float inMaxDistSq=1.0e-12f) const
Test if vector is near zero.
Definition Vec3.inl:352
static JPH_INLINE Vec3 sZero()
Vector with all zeros.
Definition Vec3.inl:103
static JPH_INLINE UVec4 sLess(Vec3Arg inV1, Vec3Arg inV2)
Less than (component wise)
Definition Vec3.inl:193
static JPH_INLINE Vec3 sReplicate(float inV)
Replicate inV across all components.
Definition Vec3.inl:114
static JPH_INLINE Vec3 sClamp(Vec3Arg inV, Vec3Arg inMin, Vec3Arg inMax)
Clamp a vector between min and max (component wise)
Definition Vec3.inl:173
JPH_INLINE Vec3 & operator*=(float inV2)
Multiply vector with float.
Definition Vec3.inl:401
JPH_INLINE Vec3 & operator+=(Vec3Arg inV2)
Add two float vectors (component wise)
Definition Vec3.inl:460
static JPH_INLINE Vec3 sSelect(Vec3Arg inNotSet, Vec3Arg inSet, UVec4Arg inControl)
Component wise select, returns inNotSet when highest bit of inControl = 0 and inSet when highest bit ...
Definition Vec3.inl:270
JPH_INLINE bool IsNaN() const
Test if vector contains NaN elements.
Definition Vec3.inl:757
JPH_INLINE Vec3 Sqrt() const
Component wise square root.
Definition Vec3.inl:696
JPH_INLINE UVec4 ReinterpretAsInt() const
Reinterpret Vec3 as a UVec4 (doesn't change the bits)
Definition Vec3.inl:802
JPH_INLINE Vec3 DotV(Vec3Arg inV2) const
Dot product, returns the dot product in X, Y and Z components.
Definition Vec3.inl:618
static JPH_INLINE Vec3 sLoadFloat3Unsafe(const Float3 &inV)
Load 3 floats from memory (reads 32 bits extra which it doesn't use)
Definition Vec3.inl:135
JPH_INLINE float GetZ() const
Definition Vec3.h:129
JPH_INLINE Vec3 GetSign() const
Get vector that contains the sign of each element (returns 1.0f if positive, -1.0f if negative)
Definition Vec3.inl:841
static JPH_INLINE Vec3 sNaN()
Vector with all NaN's.
Definition Vec3.inl:130
Vec3()=default
Constructor.
JPH_INLINE int GetHighestComponentIndex() const
Get index of component with highest value.
Definition Vec3.inl:572
static JPH_INLINE Vec3 sFusedMultiplyAdd(Vec3Arg inMul1, Vec3Arg inMul2, Vec3Arg inAdd)
Calculates inMul1 * inMul2 + inAdd.
Definition Vec3.inl:253
JPH_INLINE Vec3 Swizzle() const
Swizzle the elements in inV.
JPH_INLINE float GetX() const
Get individual components.
Definition Vec4.h:116
JPH_INLINE float GetY() const
Definition Vec4.h:117
static JPH_INLINE Vec4 sReplicate(float inV)
Replicate inV across all components.
Definition Vec4.inl:74
void SinCos(Vec4 &outSin, Vec4 &outCos) const
Calculate the sine and cosine for each element of this vector (input in radians)
Definition Vec4.inl:783