Jolt Physics
A multi core friendly Game Physics Engine
|
A cylinder. More...
#include <CylinderShape.h>
Classes | |
class | Cylinder |
Public Member Functions | |
JPH_OVERRIDE_NEW_DELETE | CylinderShape () |
Constructor. | |
CylinderShape (const CylinderShapeSettings &inSettings, ShapeResult &outResult) | |
CylinderShape (float inHalfHeight, float inRadius, float inConvexRadius=cDefaultConvexRadius, const PhysicsMaterial *inMaterial=nullptr) | |
float | GetHalfHeight () const |
Get half height of cylinder. | |
float | GetRadius () const |
Get radius of cylinder. | |
virtual AABox | GetLocalBounds () const override |
Get local bounding box including convex radius, this box is centered around the center of mass rather than the world transform. | |
virtual float | GetInnerRadius () const override |
virtual MassProperties | GetMassProperties () const override |
Calculate the mass and inertia of this shape. | |
virtual Vec3 | GetSurfaceNormal (const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const override |
virtual void | GetSupportingFace (const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const override |
virtual const Support * | GetSupportFunction (ESupportMode inMode, SupportBuffer &inBuffer, Vec3Arg inScale) const override |
virtual void | Draw (DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const override |
Draw the shape at a particular location with a particular color (debugging purposes) | |
virtual bool | CastRay (const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const override |
virtual void | CollidePoint (Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter={ }) const override |
virtual void | CollideSoftBodyVertices (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const override |
virtual void | GetTrianglesStart (GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const override |
virtual int | GetTrianglesNext (GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials=nullptr) const override |
virtual void | SaveBinaryState (StreamOut &inStream) const override |
Saves the contents of the shape in binary form to inStream. | |
virtual Stats | GetStats () const override |
Get stats of this shape. Use for logging / data collection purposes only. Does not add values from child shapes, use GetStatsRecursive for this. | |
virtual float | GetVolume () const override |
float | GetConvexRadius () const |
Get the convex radius of this cylinder. | |
virtual bool | IsValidScale (Vec3Arg inScale) const override |
virtual Vec3 | MakeScaleValid (Vec3Arg inScale) const override |
virtual bool | CastRay (const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const override |
virtual void | CastRay (const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter={ }) const override |
Public Member Functions inherited from ConvexShape | |
JPH_OVERRIDE_NEW_DELETE | ConvexShape (EShapeSubType inSubType) |
Constructor. | |
ConvexShape (EShapeSubType inSubType, const ConvexShapeSettings &inSettings, ShapeResult &outResult) | |
ConvexShape (EShapeSubType inSubType, const PhysicsMaterial *inMaterial) | |
virtual uint | GetSubShapeIDBitsRecursive () const override |
Get the max number of sub shape ID bits that are needed to be able to address any leaf shape in this shape. Used mainly for checking that it is smaller or equal than SubShapeID::MaxBits. | |
virtual const PhysicsMaterial * | GetMaterial (const SubShapeID &inSubShapeID) const override |
Get the material assigned to a particular sub shape ID. | |
virtual void | GetSubmergedVolume (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, RVec3Arg inBaseOffset)) const override |
void | SetMaterial (const PhysicsMaterial *inMaterial) |
Material of the shape. | |
const PhysicsMaterial * | GetMaterial () const |
void | SetDensity (float inDensity) |
Set density of the shape (kg / m^3) | |
float | GetDensity () const |
Get density of the shape (kg / m^3) | |
virtual void | DrawGetSupportFunction (DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inDrawSupportDirection) const override |
Draw the results of the GetSupportFunction with the convex radius added back on to show any errors introduced by this process (only relevant for convex shapes) | |
virtual void | DrawGetSupportingFace (DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale) const override |
Draw the results of the GetSupportingFace function to show any errors introduced by this process (only relevant for convex shapes) | |
virtual void | SaveMaterialState (PhysicsMaterialList &outMaterials) const override |
virtual void | RestoreMaterialState (const PhysicsMaterialRefC *inMaterials, uint inNumMaterials) override |
Restore the material references after calling sRestoreFromBinaryState. Note that the exact same materials need to be provided in the same order as returned by SaveMaterialState. | |
Public Member Functions inherited from Shape | |
Shape (EShapeType inType, EShapeSubType inSubType) | |
Constructor. | |
Shape (EShapeType inType, EShapeSubType inSubType, const ShapeSettings &inSettings, ShapeResult &outResult) | |
virtual | ~Shape ()=default |
Destructor. | |
EShapeType | GetType () const |
Get type. | |
EShapeSubType | GetSubType () const |
uint64 | GetUserData () const |
User data (to be used freely by the application) | |
void | SetUserData (uint64 inUserData) |
virtual bool | MustBeStatic () const |
Check if this shape can only be used to create a static body or if it can also be dynamic/kinematic. | |
virtual Vec3 | GetCenterOfMass () const |
All shapes are centered around their center of mass. This function returns the center of mass position that needs to be applied to transform the shape to where it was created. | |
virtual AABox | GetWorldSpaceBounds (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const |
AABox | GetWorldSpaceBounds (DMat44Arg inCenterOfMassTransform, Vec3Arg inScale) const |
Get world space bounds including convex radius. | |
virtual const Shape * | GetLeafShape (const SubShapeID &inSubShapeID, SubShapeID &outRemainder) const |
virtual uint64 | GetSubShapeUserData (const SubShapeID &inSubShapeID) const |
Get the user data of a particular sub shape ID. Corresponds with the value stored in Shape::GetUserData of the leaf shape pointed to by inSubShapeID. | |
virtual TransformedShape | GetSubShapeTransformedShape (const SubShapeID &inSubShapeID, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale, SubShapeID &outRemainder) const |
virtual void | GetSubmergedVolume (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy, RVec3Arg inBaseOffset) const =0 |
virtual void | CollectTransformedShapes (const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale, const SubShapeIDCreator &inSubShapeIDCreator, TransformedShapeCollector &ioCollector, const ShapeFilter &inShapeFilter) const |
virtual void | TransformShape (Mat44Arg inCenterOfMassTransform, TransformedShapeCollector &ioCollector) const |
ShapeResult | ScaleShape (Vec3Arg inScale) const |
virtual Stats | GetStatsRecursive (VisitedShapes &ioVisitedShapes) const |
Volume of this shape (m^3). Note that for compound shapes the volume may be incorrect since child shapes can overlap which is not accounted for. | |
virtual void | SaveMaterialState (PhysicsMaterialList &outMaterials) const |
Outputs the material references that this shape has to outMaterials. | |
virtual void | SaveSubShapeState (ShapeList &outSubShapes) const |
Outputs the shape references that this shape has to outSubShapes. | |
virtual void | RestoreSubShapeState (const ShapeRefC *inSubShapes, uint inNumShapes) |
Restore the shape references after calling sRestoreFromBinaryState. Note that the exact same shapes need to be provided in the same order as returned by SaveSubShapeState. | |
void | SaveWithChildren (StreamOut &inStream, ShapeToIDMap &ioShapeMap, MaterialToIDMap &ioMaterialMap) const |
Save this shape, all its children and its materials. Pass in an empty map in ioShapeMap / ioMaterialMap or reuse the same map while saving multiple shapes to the same stream in order to avoid writing duplicates. | |
Public Member Functions inherited from RefTarget< Shape > | |
RefTarget ()=default | |
Constructor. | |
RefTarget (const RefTarget &) | |
~RefTarget () | |
assert no one is referencing us | |
void | SetEmbedded () const |
RefTarget & | operator= (const RefTarget &) |
Assignment operator. | |
uint32 | GetRefCount () const |
Get current refcount of this object. | |
void | AddRef () const |
Add or release a reference to this object. | |
void | Release () const |
Public Member Functions inherited from NonCopyable | |
NonCopyable ()=default | |
NonCopyable (const NonCopyable &)=delete | |
void | operator= (const NonCopyable &)=delete |
Static Public Member Functions | |
static void | sRegister () |
Static Public Member Functions inherited from ConvexShape | |
static void | sRegister () |
Static Public Member Functions inherited from Shape | |
static ShapeResult | sRestoreFromBinaryState (StreamIn &inStream) |
Creates a Shape of the correct type and restores its contents from the binary stream inStream. | |
static ShapeResult | sRestoreWithChildren (StreamIn &inStream, IDToShapeMap &ioShapeMap, IDToMaterialMap &ioMaterialMap) |
Restore a shape, all its children and materials. Pass in an empty map in ioShapeMap / ioMaterialMap or reuse the same map while reading multiple shapes from the same stream in order to restore duplicates. | |
Static Public Member Functions inherited from RefTarget< Shape > | |
static int | sInternalGetRefCountOffset () |
INTERNAL HELPER FUNCTION USED BY SERIALIZATION. | |
Protected Member Functions | |
virtual void | RestoreBinaryState (StreamIn &inStream) override |
This function should not be called directly, it is used by sRestoreFromBinaryState. | |
Additional Inherited Members | |
Public Types inherited from ConvexShape | |
enum class | ESupportMode { ExcludeConvexRadius , IncludeConvexRadius , Default } |
How the GetSupport function should behave. More... | |
Public Types inherited from Shape | |
using | ShapeResult = ShapeSettings::ShapeResult |
using | SupportingFace = StaticArray< Vec3, 32 > |
Type definition for a supporting face. | |
using | VisitedShapes = UnorderedSet< const Shape * > |
using | ShapeToIDMap = StreamUtils::ObjectToIDMap< Shape > |
using | IDToShapeMap = StreamUtils::IDToObjectMap< Shape > |
using | MaterialToIDMap = StreamUtils::ObjectToIDMap< PhysicsMaterial > |
using | IDToMaterialMap = StreamUtils::IDToObjectMap< PhysicsMaterial > |
Static Public Attributes inherited from Shape | |
static constexpr int | cGetTrianglesMinTrianglesRequested = 32 |
This is the minimum amount of triangles that should be requested through GetTrianglesNext. | |
static bool | sDrawSubmergedVolumes = false |
Debug helper which draws the intersection between water and the shapes, the center of buoyancy and the submerged volume. | |
Static Protected Member Functions inherited from Shape | |
static void | sCollidePointUsingRayCast (const Shape &inShape, Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter) |
A fallback version of CollidePoint that uses a ray cast and counts the number of hits to determine if the point is inside the shape. Odd number of hits means inside, even number of hits means outside. | |
Protected Attributes inherited from RefTarget< Shape > | |
atomic< uint32 > | mRefCount |
Current reference count. | |
Static Protected Attributes inherited from ConvexShape | |
static const StaticArray< Vec3, 384 > | sUnitSphereTriangles |
Vertex list that forms a unit sphere. | |
Static Protected Attributes inherited from RefTarget< Shape > | |
static constexpr uint32 | cEmbedded |
A large value that gets added to the refcount to mark the object as embedded. | |
A cylinder.
|
inline |
Constructor.
CylinderShape::CylinderShape | ( | const CylinderShapeSettings & | inSettings, |
ShapeResult & | outResult | ||
) |
CylinderShape::CylinderShape | ( | float | inHalfHeight, |
float | inRadius, | ||
float | inConvexRadius = cDefaultConvexRadius , |
||
const PhysicsMaterial * | inMaterial = nullptr |
||
) |
Create a shape centered around the origin with one top at (0, -inHalfHeight, 0) and the other at (0, inHalfHeight, 0) and radius inRadius. (internally the convex radius will be subtracted from the cylinder the total cylinder will not grow with the convex radius, but the edges of the cylinder will be rounded a bit).
|
overridevirtual |
Cast a ray against this shape. Allows returning multiple hits through ioCollector. Note that this version is more flexible but also slightly slower than the CastRay function that returns only a single hit. If you want the surface normal of the hit use GetSurfaceNormal(collected sub shape ID, inRay.GetPointOnRay(collected faction)).
Reimplemented from ConvexShape.
|
overridevirtual |
Cast a ray against this shape, returns true if it finds a hit closer than ioHit.mFraction and updates that fraction. Otherwise ioHit is left untouched and the function returns false. Note that the ray should be relative to the center of mass of this shape (i.e. subtract Shape::GetCenterOfMass() from RayCast::mOrigin if you want to cast against the shape in the space it was created). Convex objects will be treated as solid (meaning if the ray starts inside, you'll get a hit fraction of 0) and back face hits against triangles are returned. If you want the surface normal of the hit use GetSurfaceNormal(ioHit.mSubShapeID2, inRay.GetPointOnRay(ioHit.mFraction)).
Reimplemented from ConvexShape.
|
overridevirtual |
Cast a ray against this shape, returns true if it finds a hit closer than ioHit.mFraction and updates that fraction. Otherwise ioHit is left untouched and the function returns false. Note that the ray should be relative to the center of mass of this shape (i.e. subtract Shape::GetCenterOfMass() from RayCast::mOrigin if you want to cast against the shape in the space it was created). Convex objects will be treated as solid (meaning if the ray starts inside, you'll get a hit fraction of 0) and back face hits against triangles are returned. If you want the surface normal of the hit use GetSurfaceNormal(ioHit.mSubShapeID2, inRay.GetPointOnRay(ioHit.mFraction)).
Reimplemented from ConvexShape.
|
overridevirtual |
Check if inPoint is inside this shape. For this tests all shapes are treated as if they were solid. Note that inPoint should be relative to the center of mass of this shape (i.e. subtract Shape::GetCenterOfMass() from inPoint if you want to test against the shape in the space it was created). For a mesh shape, this test will only provide sensible information if the mesh is a closed manifold. For each shape that collides, ioCollector will receive a hit.
Reimplemented from ConvexShape.
|
overridevirtual |
Collides all vertices of a soft body with this shape and updates SoftBodyVertex::mCollisionPlane, SoftBodyVertex::mCollidingShapeIndex and SoftBodyVertex::mLargestPenetration if a collision with more penetration was found.
inCenterOfMassTransform | Center of mass transform for this shape relative to the vertices. |
inScale | Scale in local space of the shape (scales relative to its center of mass) |
inVertices | The vertices of the soft body |
inNumVertices | The number of vertices in inVertices |
inCollidingShapeIndex | Value to store in CollideSoftBodyVertexIterator::mCollidingShapeIndex when a collision was found |
Implements Shape.
|
overridevirtual |
Draw the shape at a particular location with a particular color (debugging purposes)
Implements Shape.
|
inline |
Get the convex radius of this cylinder.
|
inline |
Get half height of cylinder.
|
inlineoverridevirtual |
Returns the radius of the biggest sphere that fits entirely in the shape. In case this shape consists of multiple sub shapes, it returns the smallest sphere of the parts. This can be used as a measure of how far the shape can be moved without risking going through geometry.
Implements Shape.
|
overridevirtual |
Get local bounding box including convex radius, this box is centered around the center of mass rather than the world transform.
Implements Shape.
|
overridevirtual |
Calculate the mass and inertia of this shape.
Implements Shape.
|
inline |
Get radius of cylinder.
|
inlineoverridevirtual |
Get stats of this shape. Use for logging / data collection purposes only. Does not add values from child shapes, use GetStatsRecursive for this.
Implements Shape.
|
overridevirtual |
Returns an object that provides the GetSupport function for this shape. inMode determines if this support function includes or excludes the convex radius. of the values returned by the GetSupport function. This improves numerical accuracy of the results. inScale scales this shape in local space.
Implements ConvexShape.
|
overridevirtual |
Get the vertices of the face that faces inDirection the most (includes any convex radius). Note that this function can only return faces of convex shapes or triangles, which is why a sub shape ID to get to that leaf must be provided.
inSubShapeID | Sub shape ID of target shape |
inDirection | Direction that the face should be facing (in local space to this shape) |
inCenterOfMassTransform | Transform to transform outVertices with |
inScale | Scale in local space of the shape (scales relative to its center of mass) |
outVertices | Resulting face. The returned face can be empty if the shape doesn't have polygons to return (e.g. because it's a sphere). The face will be returned in world space. |
Reimplemented from Shape.
|
overridevirtual |
Get the surface normal of a particular sub shape ID and point on surface (all vectors are relative to center of mass for this shape). Note: When you have a CollideShapeResult or ShapeCastResult you should use -mPenetrationAxis.Normalized() as contact normal as GetSurfaceNormal will only return face normals (and not vertex or edge normals).
Implements Shape.
|
overridevirtual |
Call this repeatedly to get all triangles in the box. outTriangleVertices should be large enough to hold 3 * inMaxTriangleRequested entries. outMaterials (if it is not null) should contain inMaxTrianglesRequested entries. The function returns the amount of triangles that it found (which will be <= inMaxTrianglesRequested), or 0 if there are no more triangles. Note that the function can return a value < inMaxTrianglesRequested and still have more triangles to process (triangles can be returned in blocks). Note that the function may return triangles outside of the requested box, only coarse culling is performed on the returned triangles.
Reimplemented from ConvexShape.
|
overridevirtual |
To start iterating over triangles, call this function first. ioContext is a temporary buffer and should remain untouched until the last call to GetTrianglesNext. inBox is the world space bounding in which you want to get the triangles. inPositionCOM/inRotation/inScale describes the transform of this shape. To get the actual triangles call GetTrianglesNext.
Reimplemented from ConvexShape.
|
inlineoverridevirtual |
Implements Shape.
|
overridevirtual |
Test if inScale is a valid scale for this shape. Some shapes can only be scaled uniformly, compound shapes cannot handle shapes being rotated and scaled (this would cause shearing), scale can never be zero. When the scale is invalid, the function will return false.
Here's a list of supported scales:
Reimplemented from Shape.
This function will make sure that if you wrap this shape in a ScaledShape that the scale is valid. Note that this involves discarding components of the scale that are invalid, so the resulting scaled shape may be different than the requested scale. Compare the return value of this function with the scale you passed in to detect major inconsistencies and possibly warn the user.
inScale | Local space scale for this shape. |
Reimplemented from Shape.
|
overrideprotectedvirtual |
This function should not be called directly, it is used by sRestoreFromBinaryState.
Reimplemented from ConvexShape.
|
overridevirtual |
Saves the contents of the shape in binary form to inStream.
Reimplemented from ConvexShape.
|
static |