Jolt Physics
A multi core friendly Game Physics Engine
Loading...
Searching...
No Matches
MeshShape Class Referencefinal

#include <MeshShape.h>

Inheritance diagram for MeshShape:
Shape RefTarget< Shape > NonCopyable

Classes

struct  MSGetTrianglesContext
 

Public Member Functions

JPH_OVERRIDE_NEW_DELETE MeshShape ()
 Constructor.
 
 MeshShape (const MeshShapeSettings &inSettings, ShapeResult &outResult)
 
virtual bool MustBeStatic () const override
 Check if this shape can only be used to create a static body or if it can also be dynamic/kinematic.
 
virtual AABox GetLocalBounds () const override
 Get local bounding box including convex radius, this box is centered around the center of mass rather than the world transform.
 
virtual uint GetSubShapeIDBitsRecursive () const override
 Get the max number of sub shape ID bits that are needed to be able to address any leaf shape in this shape. Used mainly for checking that it is smaller or equal than SubShapeID::MaxBits.
 
virtual float GetInnerRadius () const override
 
virtual MassProperties GetMassProperties () const override
 Calculate the mass and inertia of this shape.
 
virtual const PhysicsMaterialGetMaterial (const SubShapeID &inSubShapeID) const override
 Get the material assigned to a particular sub shape ID.
 
const PhysicsMaterialListGetMaterialList () const
 Get the list of all materials.
 
uint GetMaterialIndex (const SubShapeID &inSubShapeID) const
 
virtual Vec3 GetSurfaceNormal (const SubShapeID &inSubShapeID, Vec3Arg inLocalSurfacePosition) const override
 
virtual void GetSupportingFace (const SubShapeID &inSubShapeID, Vec3Arg inDirection, Vec3Arg inScale, Mat44Arg inCenterOfMassTransform, SupportingFace &outVertices) const override
 
virtual void Draw (DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inUseMaterialColors, bool inDrawWireframe) const override
 Draw the shape at a particular location with a particular color (debugging purposes)
 
virtual bool CastRay (const RayCast &inRay, const SubShapeIDCreator &inSubShapeIDCreator, RayCastResult &ioHit) const override
 
virtual void CastRay (const RayCast &inRay, const RayCastSettings &inRayCastSettings, const SubShapeIDCreator &inSubShapeIDCreator, CastRayCollector &ioCollector, const ShapeFilter &inShapeFilter={ }) const override
 
virtual void CollidePoint (Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter={ }) const override
 
virtual void CollideSoftBodyVertices (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const CollideSoftBodyVertexIterator &inVertices, uint inNumVertices, int inCollidingShapeIndex) const override
 
virtual void GetTrianglesStart (GetTrianglesContext &ioContext, const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale) const override
 
virtual int GetTrianglesNext (GetTrianglesContext &ioContext, int inMaxTrianglesRequested, Float3 *outTriangleVertices, const PhysicsMaterial **outMaterials=nullptr) const override
 
virtual void GetSubmergedVolume (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy JPH_IF_DEBUG_RENDERER(, RVec3Arg inBaseOffset)) const override
 
virtual void SaveBinaryState (StreamOut &inStream) const override
 Saves the contents of the shape in binary form to inStream.
 
virtual void SaveMaterialState (PhysicsMaterialList &outMaterials) const override
 
virtual void RestoreMaterialState (const PhysicsMaterialRefC *inMaterials, uint inNumMaterials) override
 Restore the material references after calling sRestoreFromBinaryState. Note that the exact same materials need to be provided in the same order as returned by SaveMaterialState.
 
virtual Stats GetStats () const override
 Get stats of this shape. Use for logging / data collection purposes only. Does not add values from child shapes, use GetStatsRecursive for this.
 
virtual float GetVolume () const override
 
uint32 GetTriangleUserData (const SubShapeID &inSubShapeID) const
 
template<class Visitor >
JPH_INLINE void WalkTree (Visitor &ioVisitor) const
 
template<class Visitor >
JPH_INLINE void WalkTreePerTriangle (const SubShapeIDCreator &inSubShapeIDCreator2, Visitor &ioVisitor) const
 
- Public Member Functions inherited from Shape
 Shape (EShapeType inType, EShapeSubType inSubType)
 Constructor.
 
 Shape (EShapeType inType, EShapeSubType inSubType, const ShapeSettings &inSettings, ShapeResult &outResult)
 
virtual ~Shape ()=default
 Destructor.
 
EShapeType GetType () const
 Get type.
 
EShapeSubType GetSubType () const
 
uint64 GetUserData () const
 User data (to be used freely by the application)
 
void SetUserData (uint64 inUserData)
 
virtual Vec3 GetCenterOfMass () const
 All shapes are centered around their center of mass. This function returns the center of mass position that needs to be applied to transform the shape to where it was created.
 
virtual AABox GetWorldSpaceBounds (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
 
AABox GetWorldSpaceBounds (DMat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
 Get world space bounds including convex radius.
 
virtual const ShapeGetLeafShape (const SubShapeID &inSubShapeID, SubShapeID &outRemainder) const
 
virtual uint64 GetSubShapeUserData (const SubShapeID &inSubShapeID) const
 Get the user data of a particular sub shape ID. Corresponds with the value stored in Shape::GetUserData of the leaf shape pointed to by inSubShapeID.
 
virtual TransformedShape GetSubShapeTransformedShape (const SubShapeID &inSubShapeID, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale, SubShapeID &outRemainder) const
 
virtual void GetSubmergedVolume (Mat44Arg inCenterOfMassTransform, Vec3Arg inScale, const Plane &inSurface, float &outTotalVolume, float &outSubmergedVolume, Vec3 &outCenterOfBuoyancy, RVec3Arg inBaseOffset) const =0
 
virtual void DrawGetSupportFunction (DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale, ColorArg inColor, bool inDrawSupportDirection) const
 Draw the results of the GetSupportFunction with the convex radius added back on to show any errors introduced by this process (only relevant for convex shapes)
 
virtual void DrawGetSupportingFace (DebugRenderer *inRenderer, RMat44Arg inCenterOfMassTransform, Vec3Arg inScale) const
 Draw the results of the GetSupportingFace function to show any errors introduced by this process (only relevant for convex shapes)
 
virtual void CollectTransformedShapes (const AABox &inBox, Vec3Arg inPositionCOM, QuatArg inRotation, Vec3Arg inScale, const SubShapeIDCreator &inSubShapeIDCreator, TransformedShapeCollector &ioCollector, const ShapeFilter &inShapeFilter) const
 
virtual void TransformShape (Mat44Arg inCenterOfMassTransform, TransformedShapeCollector &ioCollector) const
 
ShapeResult ScaleShape (Vec3Arg inScale) const
 
virtual Stats GetStatsRecursive (VisitedShapes &ioVisitedShapes) const
 Volume of this shape (m^3). Note that for compound shapes the volume may be incorrect since child shapes can overlap which is not accounted for.
 
virtual bool IsValidScale (Vec3Arg inScale) const
 
virtual Vec3 MakeScaleValid (Vec3Arg inScale) const
 
virtual void SaveMaterialState (PhysicsMaterialList &outMaterials) const
 Outputs the material references that this shape has to outMaterials.
 
virtual void SaveSubShapeState (ShapeList &outSubShapes) const
 Outputs the shape references that this shape has to outSubShapes.
 
virtual void RestoreSubShapeState (const ShapeRefC *inSubShapes, uint inNumShapes)
 Restore the shape references after calling sRestoreFromBinaryState. Note that the exact same shapes need to be provided in the same order as returned by SaveSubShapeState.
 
void SaveWithChildren (StreamOut &inStream, ShapeToIDMap &ioShapeMap, MaterialToIDMap &ioMaterialMap) const
 Save this shape, all its children and its materials. Pass in an empty map in ioShapeMap / ioMaterialMap or reuse the same map while saving multiple shapes to the same stream in order to avoid writing duplicates.
 
- Public Member Functions inherited from RefTarget< Shape >
 RefTarget ()=default
 Constructor.
 
 RefTarget (const RefTarget &)
 
 ~RefTarget ()
 assert no one is referencing us
 
void SetEmbedded () const
 
RefTargetoperator= (const RefTarget &)
 Assignment operator.
 
uint32 GetRefCount () const
 Get current refcount of this object.
 
void AddRef () const
 Add or release a reference to this object.
 
void Release () const
 
- Public Member Functions inherited from NonCopyable
 NonCopyable ()=default
 
 NonCopyable (const NonCopyable &)=delete
 
void operator= (const NonCopyable &)=delete
 

Static Public Member Functions

static void sRegister ()
 
- Static Public Member Functions inherited from Shape
static ShapeResult sRestoreFromBinaryState (StreamIn &inStream)
 Creates a Shape of the correct type and restores its contents from the binary stream inStream.
 
static ShapeResult sRestoreWithChildren (StreamIn &inStream, IDToShapeMap &ioShapeMap, IDToMaterialMap &ioMaterialMap)
 Restore a shape, all its children and materials. Pass in an empty map in ioShapeMap / ioMaterialMap or reuse the same map while reading multiple shapes from the same stream in order to restore duplicates.
 
- Static Public Member Functions inherited from RefTarget< Shape >
static int sInternalGetRefCountOffset ()
 INTERNAL HELPER FUNCTION USED BY SERIALIZATION.
 

Static Public Attributes

static bool sDrawTriangleGroups = false
 
static bool sDrawTriangleOutlines = false
 
- Static Public Attributes inherited from Shape
static constexpr int cGetTrianglesMinTrianglesRequested = 32
 This is the minimum amount of triangles that should be requested through GetTrianglesNext.
 
static bool sDrawSubmergedVolumes = false
 Debug helper which draws the intersection between water and the shapes, the center of buoyancy and the submerged volume.
 

Protected Member Functions

virtual void RestoreBinaryState (StreamIn &inStream) override
 This function should not be called directly, it is used by sRestoreFromBinaryState.
 

Additional Inherited Members

- Public Types inherited from Shape
using ShapeResult = ShapeSettings::ShapeResult
 
using SupportingFace = StaticArray< Vec3, 32 >
 Type definition for a supporting face.
 
using VisitedShapes = UnorderedSet< const Shape * >
 
using ShapeToIDMap = StreamUtils::ObjectToIDMap< Shape >
 
using IDToShapeMap = StreamUtils::IDToObjectMap< Shape >
 
using MaterialToIDMap = StreamUtils::ObjectToIDMap< PhysicsMaterial >
 
using IDToMaterialMap = StreamUtils::IDToObjectMap< PhysicsMaterial >
 
- Static Protected Member Functions inherited from Shape
static void sCollidePointUsingRayCast (const Shape &inShape, Vec3Arg inPoint, const SubShapeIDCreator &inSubShapeIDCreator, CollidePointCollector &ioCollector, const ShapeFilter &inShapeFilter)
 A fallback version of CollidePoint that uses a ray cast and counts the number of hits to determine if the point is inside the shape. Odd number of hits means inside, even number of hits means outside.
 
- Protected Attributes inherited from RefTarget< Shape >
atomic< uint32mRefCount
 Current reference count.
 
- Static Protected Attributes inherited from RefTarget< Shape >
static constexpr uint32 cEmbedded
 A large value that gets added to the refcount to mark the object as embedded.
 

Detailed Description

A mesh shape, consisting of triangles. Mesh shapes are mostly used for static geometry. They can be used by dynamic or kinematic objects but only if they don't collide with other mesh or heightfield shapes as those collisions are currently not supported. Note that if you make a mesh shape a dynamic or kinematic object, you need to provide a mass yourself as mesh shapes don't need to form a closed hull so don't have a well defined volume from which the mass can be calculated.

Constructor & Destructor Documentation

◆ MeshShape() [1/2]

JPH_OVERRIDE_NEW_DELETE MeshShape::MeshShape ( )
inline

Constructor.

◆ MeshShape() [2/2]

MeshShape::MeshShape ( const MeshShapeSettings inSettings,
ShapeResult outResult 
)

Member Function Documentation

◆ CastRay() [1/2]

void MeshShape::CastRay ( const RayCast inRay,
const RayCastSettings inRayCastSettings,
const SubShapeIDCreator inSubShapeIDCreator,
CastRayCollector ioCollector,
const ShapeFilter inShapeFilter = { } 
) const
overridevirtual

Cast a ray against this shape. Allows returning multiple hits through ioCollector. Note that this version is more flexible but also slightly slower than the CastRay function that returns only a single hit. If you want the surface normal of the hit use GetSurfaceNormal(collected sub shape ID, inRay.GetPointOnRay(collected faction)).

Implements Shape.

◆ CastRay() [2/2]

bool MeshShape::CastRay ( const RayCast inRay,
const SubShapeIDCreator inSubShapeIDCreator,
RayCastResult ioHit 
) const
overridevirtual

Cast a ray against this shape, returns true if it finds a hit closer than ioHit.mFraction and updates that fraction. Otherwise ioHit is left untouched and the function returns false. Note that the ray should be relative to the center of mass of this shape (i.e. subtract Shape::GetCenterOfMass() from RayCast::mOrigin if you want to cast against the shape in the space it was created). Convex objects will be treated as solid (meaning if the ray starts inside, you'll get a hit fraction of 0) and back face hits against triangles are returned. If you want the surface normal of the hit use GetSurfaceNormal(ioHit.mSubShapeID2, inRay.GetPointOnRay(ioHit.mFraction)).

Implements Shape.

◆ CollidePoint()

void MeshShape::CollidePoint ( Vec3Arg  inPoint,
const SubShapeIDCreator inSubShapeIDCreator,
CollidePointCollector ioCollector,
const ShapeFilter inShapeFilter = { } 
) const
overridevirtual

See: Shape::CollidePoint Note that for CollidePoint to work for a mesh shape, the mesh needs to be closed (a manifold) or multiple non-intersecting manifolds. Triangles may be facing the interior of the manifold. Insideness is tested by counting the amount of triangles encountered when casting an infinite ray from inPoint. If the number of hits is odd we're inside, if it's even we're outside.

Implements Shape.

◆ CollideSoftBodyVertices()

void MeshShape::CollideSoftBodyVertices ( Mat44Arg  inCenterOfMassTransform,
Vec3Arg  inScale,
const CollideSoftBodyVertexIterator inVertices,
uint  inNumVertices,
int  inCollidingShapeIndex 
) const
overridevirtual

Collides all vertices of a soft body with this shape and updates SoftBodyVertex::mCollisionPlane, SoftBodyVertex::mCollidingShapeIndex and SoftBodyVertex::mLargestPenetration if a collision with more penetration was found.

Parameters
inCenterOfMassTransformCenter of mass transform for this shape relative to the vertices.
inScaleScale in local space of the shape (scales relative to its center of mass)
inVerticesThe vertices of the soft body
inNumVerticesThe number of vertices in inVertices
inCollidingShapeIndexValue to store in CollideSoftBodyVertexIterator::mCollidingShapeIndex when a collision was found

Implements Shape.

◆ Draw()

void MeshShape::Draw ( DebugRenderer inRenderer,
RMat44Arg  inCenterOfMassTransform,
Vec3Arg  inScale,
ColorArg  inColor,
bool  inUseMaterialColors,
bool  inDrawWireframe 
) const
overridevirtual

Draw the shape at a particular location with a particular color (debugging purposes)

Implements Shape.

◆ GetInnerRadius()

virtual float MeshShape::GetInnerRadius ( ) const
inlineoverridevirtual

Returns the radius of the biggest sphere that fits entirely in the shape. In case this shape consists of multiple sub shapes, it returns the smallest sphere of the parts. This can be used as a measure of how far the shape can be moved without risking going through geometry.

Implements Shape.

◆ GetLocalBounds()

AABox MeshShape::GetLocalBounds ( ) const
overridevirtual

Get local bounding box including convex radius, this box is centered around the center of mass rather than the world transform.

Implements Shape.

◆ GetMassProperties()

MassProperties MeshShape::GetMassProperties ( ) const
overridevirtual

Calculate the mass and inertia of this shape.

Implements Shape.

◆ GetMaterial()

const PhysicsMaterial * MeshShape::GetMaterial ( const SubShapeID inSubShapeID) const
overridevirtual

Get the material assigned to a particular sub shape ID.

Implements Shape.

◆ GetMaterialIndex()

uint MeshShape::GetMaterialIndex ( const SubShapeID inSubShapeID) const

Determine which material index a particular sub shape uses (note that if there are no materials this function will return 0 so check the array size) Note: This could for example be used to create a decorator shape around a mesh shape that overrides the GetMaterial call to replace a material with another material.

◆ GetMaterialList()

const PhysicsMaterialList & MeshShape::GetMaterialList ( ) const
inline

Get the list of all materials.

◆ GetStats()

Shape::Stats MeshShape::GetStats ( ) const
overridevirtual

Get stats of this shape. Use for logging / data collection purposes only. Does not add values from child shapes, use GetStatsRecursive for this.

Implements Shape.

◆ GetSubmergedVolume()

virtual void MeshShape::GetSubmergedVolume ( Mat44Arg  inCenterOfMassTransform,
Vec3Arg  inScale,
const Plane inSurface,
float &  outTotalVolume,
float &  outSubmergedVolume,
Vec3 &outCenterOfBuoyancy   JPH_IF_DEBUG_RENDERER, RVec3Arg inBaseOffset 
) const
inlineoverridevirtual

◆ GetSubShapeIDBitsRecursive()

uint MeshShape::GetSubShapeIDBitsRecursive ( ) const
overridevirtual

Get the max number of sub shape ID bits that are needed to be able to address any leaf shape in this shape. Used mainly for checking that it is smaller or equal than SubShapeID::MaxBits.

Implements Shape.

◆ GetSupportingFace()

void MeshShape::GetSupportingFace ( const SubShapeID inSubShapeID,
Vec3Arg  inDirection,
Vec3Arg  inScale,
Mat44Arg  inCenterOfMassTransform,
SupportingFace outVertices 
) const
overridevirtual

Get the vertices of the face that faces inDirection the most (includes any convex radius). Note that this function can only return faces of convex shapes or triangles, which is why a sub shape ID to get to that leaf must be provided.

Parameters
inSubShapeIDSub shape ID of target shape
inDirectionDirection that the face should be facing (in local space to this shape)
inCenterOfMassTransformTransform to transform outVertices with
inScaleScale in local space of the shape (scales relative to its center of mass)
outVerticesResulting face. The returned face can be empty if the shape doesn't have polygons to return (e.g. because it's a sphere). The face will be returned in world space.

Reimplemented from Shape.

◆ GetSurfaceNormal()

Vec3 MeshShape::GetSurfaceNormal ( const SubShapeID inSubShapeID,
Vec3Arg  inLocalSurfacePosition 
) const
overridevirtual

Get the surface normal of a particular sub shape ID and point on surface (all vectors are relative to center of mass for this shape). Note: When you have a CollideShapeResult or ShapeCastResult you should use -mPenetrationAxis.Normalized() as contact normal as GetSurfaceNormal will only return face normals (and not vertex or edge normals).

Implements Shape.

◆ GetTrianglesNext()

int MeshShape::GetTrianglesNext ( GetTrianglesContext ioContext,
int  inMaxTrianglesRequested,
Float3 outTriangleVertices,
const PhysicsMaterial **  outMaterials = nullptr 
) const
overridevirtual

Call this repeatedly to get all triangles in the box. outTriangleVertices should be large enough to hold 3 * inMaxTriangleRequested entries. outMaterials (if it is not null) should contain inMaxTrianglesRequested entries. The function returns the amount of triangles that it found (which will be <= inMaxTrianglesRequested), or 0 if there are no more triangles. Note that the function can return a value < inMaxTrianglesRequested and still have more triangles to process (triangles can be returned in blocks). Note that the function may return triangles outside of the requested box, only coarse culling is performed on the returned triangles.

Implements Shape.

◆ GetTrianglesStart()

void MeshShape::GetTrianglesStart ( GetTrianglesContext ioContext,
const AABox inBox,
Vec3Arg  inPositionCOM,
QuatArg  inRotation,
Vec3Arg  inScale 
) const
overridevirtual

To start iterating over triangles, call this function first. ioContext is a temporary buffer and should remain untouched until the last call to GetTrianglesNext. inBox is the world space bounding in which you want to get the triangles. inPositionCOM/inRotation/inScale describes the transform of this shape. To get the actual triangles call GetTrianglesNext.

Implements Shape.

◆ GetTriangleUserData()

uint32 MeshShape::GetTriangleUserData ( const SubShapeID inSubShapeID) const

◆ GetVolume()

virtual float MeshShape::GetVolume ( ) const
inlineoverridevirtual

Implements Shape.

◆ MustBeStatic()

virtual bool MeshShape::MustBeStatic ( ) const
inlineoverridevirtual

Check if this shape can only be used to create a static body or if it can also be dynamic/kinematic.

Reimplemented from Shape.

◆ RestoreBinaryState()

void MeshShape::RestoreBinaryState ( StreamIn inStream)
overrideprotectedvirtual

This function should not be called directly, it is used by sRestoreFromBinaryState.

Reimplemented from Shape.

◆ RestoreMaterialState()

void MeshShape::RestoreMaterialState ( const PhysicsMaterialRefC inMaterials,
uint  inNumMaterials 
)
overridevirtual

Restore the material references after calling sRestoreFromBinaryState. Note that the exact same materials need to be provided in the same order as returned by SaveMaterialState.

Reimplemented from Shape.

◆ SaveBinaryState()

void MeshShape::SaveBinaryState ( StreamOut inStream) const
overridevirtual

Saves the contents of the shape in binary form to inStream.

Reimplemented from Shape.

◆ SaveMaterialState()

void MeshShape::SaveMaterialState ( PhysicsMaterialList outMaterials) const
overridevirtual

◆ sRegister()

void MeshShape::sRegister ( )
static

◆ WalkTree()

template<class Visitor >
JPH_INLINE void MeshShape::WalkTree ( Visitor &  ioVisitor) const

◆ WalkTreePerTriangle()

template<class Visitor >
JPH_INLINE void MeshShape::WalkTreePerTriangle ( const SubShapeIDCreator inSubShapeIDCreator2,
Visitor &  ioVisitor 
) const

Member Data Documentation

◆ sDrawTriangleGroups

JPH_NAMESPACE_BEGIN bool MeshShape::sDrawTriangleGroups = false
static

◆ sDrawTriangleOutlines

bool MeshShape::sDrawTriangleOutlines = false
static

The documentation for this class was generated from the following files: